Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.

References

References
1.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad
,
M. R.
, and
Kamm
,
R. D.
,
2003
, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
147
155
.
2.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
,
2005
, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Behaviors in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1185
1194
.
3.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
,
2009
, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
(
10
), pp.
3258
3263
.
4.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
,
2004
, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
657
665
.
5.
Lendon
,
C. L.
,
Davies
,
M. J.
,
Richardson
,
P. D.
, and
Born
,
G. V.
,
1993
, “
Testing of Small Connective Tissue Specimens for the Determination of the Mechanical Behavior of Atherosclerotic Plaques
,”
J. Biomed. Eng.
,
15
(
1
), pp.
27
33
.
6.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
,
1994
, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
,
27
(
2
), pp.
195
204
.
7.
Maher
,
E.
,
Creane
,
A.
,
Sultan
,
S.
,
Hynes
,
N.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2009
, “
Tensile and Compressive Properties of Fresh Human Carotid Atherosclerotic Plaques
,”
J. Biomech.
,
42
(
16
), pp.
2760
2767
.
8.
Teng
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Feng
,
J.
,
Yuan
,
J.
,
Lu
,
Q.
,
Sutcliffe
,
M. P.
,
Brown
,
A. J.
,
Jing
,
Z.
, and
Gillard
,
J. H.
,
2014
, “
Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study
,”
Acta Biomater.
,
10
(
12
), pp.
5055
5063
.
9.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation
,”
Circulation
,
87
(
4
), pp.
1179
1187
.
10.
Li
,
Z. Y.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
U-King-Um
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L. Q.
, and
Gillard
,
J. H.
,
2006
, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
,
39
(
14
), pp.
2611
2622
.
11.
Sadat
,
U.
,
Teng
,
Z.
,
Young
,
V. E.
,
Walsh
,
S. R.
,
Li
,
Z. Y.
,
Graves
,
M. J.
,
Varty
,
K.
, and
Gillard
,
J. H.
,
2010
, “
Association Between Biomechanical Structural Stresses of Atherosclerotic Carotid Plaques and Subsequent Ischaemic Cerebrovascular Events—A Longitudinal In Vivo Magnetic Resonance Imaging-Based Finite Element Study
,”
Eur. J. Vasc. Endovascular Surg.
,
40
(
4
), pp.
485
491
.
12.
Fung
,
Y. C.
,
1993
,
Biomechanics—Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer-Verlag
,
New York
, pp.
322
326
; 349–352.
13.
Silver
,
F. H.
,
Snowhill
,
P. B.
, and
Foran
,
D. J.
,
2003
, “
Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava and Carotid Artery
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
793
803
.
14.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
,
2002
, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
753
767
.
15.
Learoyd
,
B. M.
, and
Taylor
,
M. G.
,
1966
, “
Alterations With Age in the Viscoelastic Properties of Human Arterial Walls
,”
Circ. Res.
,
18
(
3
), pp.
278
292
.
16.
Dobrin
,
P. R.
,
1986
, “
Biaxial Anisotropy of Dog Carotid Artery: Estimation of Circumferential Elastic Modulus
,”
J. Biomech.
,
19
(
5
), pp.
351
358
.
17.
Dobrin
,
P. B.
, and
Canfield
,
T. R.
,
1984
, “
Elastase, Collagenase, and the Biaxial Elastic Properties of Dog Carotid Artery
,”
Am. J. Physiol.
,
247
(1), pp.
H124
H131
.
18.
Weizsacker
,
H. W.
,
Lambert
,
H.
, and
Pascale
,
K.
,
1983
, “
Analysis of the Passive Mechanical Properties of Rat Carotid Arteries
,”
J. Biomech.
,
16
(
9
), pp.
703
715
.
19.
Nagaraj
,
A.
,
Kim
,
H.
,
Hamilton
,
A. J.
,
Mun
,
J. H.
,
Smulevitz
,
B.
,
Kane
,
B. J.
,
Yan
,
L. L.
,
Roth
,
S. I.
,
McPherson
,
D. D.
, and
Chandran
,
K. B.
,
2005
, “
Porcine Carotid Arterial Material Property Alterations With Induced Atheroma: An In Vivo Study
,”
Med. Eng. Phys.
,
27
(
2
), pp.
147
156
.
20.
Richardson
,
P. D.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems and New Frontiers
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
524
536
.
21.
Teng
,
Z.
,
Tang
,
D.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Hoffman
,
A. H.
,
2009
, “
An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in the Circumferential and Axial Directions
,”
J. Biomech.
,
42
(
15
), pp.
2535
2539
.
22.
von Maltzahn
,
W. W.
, and
Keitz
,
E. B.
,
1984
, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
,
17
(
11
), pp.
839
847
.
23.
Cai
,
J. M.
,
Hatsukami
,
T. S.
,
Ferguson
,
M. S.
,
Small
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
,
2002
, “
Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging
,”
Circulation
,
106
(
11
), pp.
1368
1373
.
24.
Yang
,
C.
,
Tang
,
D.
,
Yuan
,
C.
,
Hatsukami
,
T. S.
,
Zheng
,
J.
, and
Woodard
,
P. K.
,
2007
, “
In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared With Fluid/Wall-Only Models
,”
Comput. Model. Eng. Sci.
,
19
(3), pp.
233
245
.
25.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, and
Meister
,
J. J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.
26.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.
27.
Holzapfel
,
G. A.
,
2006
, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
,
238
(
2
), pp.
290
302
.
28.
von Maltzahn
,
W. W.
,
Besdo
,
D.
, and
Wiemer
,
W.
,
1981
, “
Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model
,”
J. Biomech.
,
14
(
6
), pp.
389
397
.
29.
Weizsacker
,
H. W.
, and
Pinto
,
J. G.
,
1988
, “
Isotropy and Anisotropy of the Arterial Wall
,”
J. Biomech.
,
21
(
6
), pp.
477
487
.
30.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
A New Constitutive Model for Multi-Layered Collagenous Tissues
,”
J. Biomech.
,
41
(
12
), pp.
2766
2771
.
31.
Masson
,
I.
,
Boutouyrie
,
P.
,
Laurant
,
S.
,
Humphrey
,
J. D.
, and
Zidi
,
M.
,
2008
, “
Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data
,”
J. Biomech.
,
41
(12), pp.
2618
2627
.
32.
Ugural
,
A. C.
, and
Fenster
,
S. K.
,
1995
,
Advanced Strength and Applied Elasticity
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
, pp.
327
340
.
33.
Reneman
,
R. S.
,
van Merode
,
T.
,
Hick
,
P.
,
Muutjens
,
A. M. M.
, and
Hoeks
,
A. P. G.
,
1986
, “
Age-Related Changes in Carotid Artery Wall Properties in Men
,”
Ultrasound Med. Biol.
,
12
(
6
), pp.
465
471
.
34.
Schulze-Bauer
,
C. A. J.
,
Morth
,
C.
, and
Holzapfel
,
G. A.
,
2003
, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
395
406
.
35.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(1), pp.
1
8
.
36.
Cecelja
,
M.
, and
Chowienczyk
,
P.
,
2012
, “
Role of Arterial Stiffness in Cardiovascular Disease
,”
JRSM Cardiovasc. Dis.
,
1
(
4
), pp. 1–10.
37.
Teng
,
Z.
,
Feng
,
J.
,
Zhang
,
Y.
,
Sutcliffe
,
M. P. F.
,
Huang
,
Y.
,
Brown
,
A. J.
,
Jing
,
Z.
,
Lu
,
Q.
, and
Gillard
,
J. H.
,
2015
, “
A Uni-Extension Study on the Ultimate Material Strength and Extreme Extensibility of Atherosclerotic Tissue in Human Carotid Plaques
,”
J. Biomech.
,
48
(
14
), pp.
3859
3867
.
You do not currently have access to this content.