The mechanisms underlying the spatial organization of self-assembled myofibrils in cardiac tissues remain incompletely understood. By modeling cells as elastic solids under active cytoskeletal contraction, we found a good correlation between the predicted maximal principal stress directions and the in vitro myofibril orientations in individual cardiomyocytes. This implies that actomyosin fibers tend to assemble along the maximal tensile stress (MTS) directions. By considering the dynamics of focal adhesion and myofibril formation in the model, we showed that different patterns of myofibril organizations in mature versus immature cardiomyocytes can be explained as the consequence of the different levels of force-dependent remodeling of focal adhesions. Further, we applied the mechanics model to cell pairs and showed that the myofibril organizations can be regulated by a combination of multiple factors including cell shape, cell–substrate adhesions, and cell–cell adhesions. This mechanics model can guide the rational design in cardiac tissue engineering where recapitulating in vivo myofibril organizations is crucial to the contractile function of the heart.

References

References
1.
Chien
,
K. R.
,
Domian
,
I. J.
, and
Parker
,
K. K.
,
2008
, “
Cardiogenesis and the Complex Biology of Regenerative Cardiovascular Medicine
,”
Science
,
322
(
5907
), pp.
1494
1497
.
2.
Pasqualini
,
F. S.
,
Sheehy
,
S. P.
,
Agarwal
,
A.
,
Aratyn-Schaus
,
Y.
, and
Parker
,
K. K.
,
2015
, “
Structural Phenotyping of Stem Cell-Derived Cardiomyocytes
,”
Stem Cell Rep.
,
4
(
3
), pp.
340
347
.
3.
Gerdes
,
A. M.
, and
Capasso
,
J. M.
,
1995
, “
Structural Remodeling and Mechanical Dysfunction of Cardiac Myocytes in Heart Failure
,”
J. Mol. Cell Cardiol.
,
27
(
3
), pp.
849
856
.
4.
Aratyn-Schaus
,
Y.
,
Pasqualini
,
F. S.
,
Yuan
,
H.
,
McCain
,
M. L.
,
Ye
,
G. J. C.
,
Sheehy
,
S. P.
,
Campbell
,
P. H.
, and
Parker
,
K. K.
,
2016
, “
Coupling Primary and Stem Cell-Derived Cardiomyocytes in an In Vitro Model of Cardiac Cell Therapy
,”
J. Cell Biol.
,
212
(
4
), pp. 389–397.
5.
Wang
,
G.
,
McCain
,
M. L.
,
Yang
,
L.
,
He
,
A.
,
Pasqualini
,
F. S.
,
Agarwal
,
A.
,
Yuan
,
H.
,
Jiang
,
D.
,
Zhang
,
D.
,
Zangi
,
L.
,
Geva
,
J.
,
Roberts
,
A. E.
,
Ma
,
Q.
,
Ding
,
J.
,
Chen
,
J.
,
Wang
,
D.-Z.
,
Li
,
K.
,
Wang
,
J.
,
Wanders
,
R. J. A.
,
Kulik
,
W.
,
Vaz
,
F. M.
,
Laflamme
,
M. A.
,
Murry
,
C. E.
,
Chien
,
K. R.
,
Kelley
,
R. I.
,
Church
,
G. M.
,
Parker
,
K. K.
, and
Pu
,
W. T.
,
2014
, “
Modeling the Mitochondrial Cardiomyopathy of Barth Syndrome With Induced Pluripotent Stem Cell and Heart-on-Chip Technologies
,”
Nat. Med.
,
20
(
6
), pp.
616
623
.
6.
Sheehy
,
S. P.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2012
, “
The Contribution of Cellular Mechanotransduction to Cardiomyocyte Form and Function
,”
Biomech. Model. Mechanobiol.
,
11
(
8
), pp.
1227
1239
.
7.
Feinberg
,
A. W.
,
Feigel
,
A.
,
Shevkoplyas
,
S. S.
,
Sheehy
,
S.
,
Whitesides
,
G. M.
, and
Parker
,
K. K.
,
2007
, “
Muscular Thin Films for Building Actuators and Powering Devices
,”
Science
,
317
(
5843
), pp.
1366
1370
.
8.
Ribeiro
,
A. J. S.
,
Ang
,
Y.-S.
,
Fu
,
J.-D.
,
Rivas
,
R. N.
,
Mohamed
,
T. M. A.
,
Higgs
,
G. C.
,
Srivastava
,
D.
, and
Pruitt
,
B. L.
,
2015
, “
Contractility of Single Cardiomyocytes Differentiated From Pluripotent Stem Cells Depends on Physiological Shape and Substrate Stiffness
,”
Proc. Natl. Acad. Sci. U.S A.
,
112
(
41
), pp.
12705
12710
.
9.
Parker
,
K. K.
,
Tan
,
J.
,
Chen
,
C. S.
, and
Tung
,
L.
,
2008
, “
Myofibrillar Architecture in Engineered Cardiac Myocytes
,”
Circ. Res.
,
103
(
4
), pp.
340
342
.
10.
Du
,
A.
,
Sanger
,
J. M.
, and
Sanger
,
J. W.
,
2008
, “
Cardiac Myofibrillogenesis Inside Intact Embryonic Hearts
,”
Dev. Biol.
,
318
(
2
), pp.
236
246
.
11.
Sparrow
,
J. C.
, and
Schock
,
F.
,
2009
, “
The Initial Steps of Myofibril Assembly: Integrins Pave the Way
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
4
), pp.
293
298
.
12.
Dlugosz
,
A. A.
,
Antin
,
P. B.
, and
Nachmias
,
V. T.
,
1984
, “
The Relationship Between Stress Fiber-Like Structures and Nascent Myofibrils in Cultured Cardiac Myocytes
,”
J. Cell Biol.
,
99
(
6
), pp.
2268
2270
.
13.
Rhee
,
D.
,
Sanger
,
J. M.
, and
Sanger
,
J. W.
,
1994
, “
The Premyofibril: Evidence for Its Role in Myofibrillogenesis
,”
Cell Motil. Cytoskeleton
,
28
(
1
), pp.
1
24
.
14.
Bray
,
M. A.
,
Sheehy
,
S. P.
, and
Parker
,
K. K.
,
2008
, “
Sarcomere Alignment Is Regulated by Myocyte Shape
,”
Cell Motil. Cytoskeleton
,
65
(
8
), pp.
641
651
.
15.
Grosberg
,
A.
,
Kuo
,
P.-L.
,
Guo
,
C.-L.
,
Geisse
,
N. A.
,
Bray
,
M. A.
,
Adams
,
W. J.
,
Sheehy
,
S. P.
, and
Parker
,
K. K.
,
2011
, “
Self-Organization of Muscle Cell Structure and Function
,”
PLoS Comput. Biol.
,
7
(
2
), p.
e1001088
.
16.
Kuo
,
P. L.
,
Lee
,
H.
,
Bray
,
M. A.
,
Geisse
,
N. A.
,
Huang
,
Y. T.
,
Adams
,
W. J.
,
Sheehy
,
S. P.
, and
Parker
,
K. K.
,
2012
, “
Myocyte Shape Regulates Lateral Registry of Sarcomeres and Contractility
,”
Am. J. Pathol.
,
181
(
6
), pp.
2030
2037
.
17.
Parker
,
K. K.
,
Brock
,
A. L.
,
Brangwynne
,
C.
,
Mannix
,
R. J.
,
Wang
,
N.
,
Ostuni
,
E.
,
Geisse
,
N. A.
,
Adams
,
J. C.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
2002
, “
Directional Control of Lamellipodia Extension by Constraining Cell Shape and Orienting Cell Tractional Forces
,”
FASEB J.
,
16
(
10
), pp.
1195
1204
.
18.
Kresh
,
J. Y.
, and
Chopra
,
A.
,
2011
, “
Intercellular and Extracellular Mechanotransduction in Cardiac Myocytes
,”
Pflugers Arch.
462
(
1
):75-87, pp.
75
87
.
19.
McCain
,
M. L.
,
Yuan
,
H.
,
Pasqualini
,
F. S.
,
Campbell
,
P. H.
, and
Parker
,
K. K.
,
2014
, “
Matrix Elasticity Regulates the Optimal Cardiac Myocyte Shape for Contractility
,”
Am. J. Physiol. Heart Circ. Physiol.
,
306
(
11
), pp.
H1525
H1539
.
20.
Pathak
,
A.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
The Simulation of Stress Fibre and Focal Adhesion Development in Cells on Patterned Substrates
,”
J. R. Soc. Interface
,
5
(
22
), pp.
507
524
.
21.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2006
, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
38
), pp.
14015
14020
.
22.
Pe
,
A.
,
Thery
,
M.
,
Pepin
,
A.
,
Dressaire
,
E.
,
Chen
,
Y.
, and
Bornens
,
M.
,
2006
, “
Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment
,”
Cell Motil. Cytoskeleton
,
63
(
6
), pp.
341
355
.
23.
Vernerey
,
F. J.
, and
Farsad
,
M.
,
2011
, “
A Constrained Mixture Approach to Mechano-Sensing and Force Generation in Contractile Cells
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1683
1699
.
24.
Geisse
,
N. A.
,
Sheehy
,
S. P.
, and
Parker
,
K. K.
,
2009
, “
Control of Myocyte Remodeling In Vitro With Engineered Substrates
,”
In Vitro Cell. Dev. Biol.
,
45
(
7
), pp.
343
350
.
25.
Zemel
,
A.
,
Rehfeldt
,
F.
,
Brown
,
A. E. X.
,
Discher
,
D. E.
, and
Safran
,
S. A.
,
2010
, “
Optimal Matrix Rigidity for Stress-Fibre Polarization in Stem Cells
,”
Nat. Phys.
,
6
(
6
), pp.
468
473
.
26.
Kang
,
J.
,
Steward
,
R. L.
,
Kim
,
Y. T.
,
Schwartz
,
R. S.
,
LeDuc
,
P. R.
, and
Puskar
,
K. M.
,
2011
, “
Response of an Actin Filament Network Model Under Cyclic Stretching Through a Coarse Grained Monte Carl Approach
,”
J. Theor. Biol.
,
274
(
1
), pp.
109
119
.
27.
Walcott
,
S.
, and
Sun
,
S. X.
,
2010
, “
A Mechanical Model of Actin Stress Fiber Formation and Substrate Elasticity Sensing in Adherent Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
17
), pp.
7757
7762
.
28.
Burridge
,
K.
, and
Wittchen
,
E. S.
,
2013
, “
The Tension Mounts: Stress Fibers as Force-Generating Mechanotransducers
,”
J. Cell Biol.
,
200
(
1
), pp.
9
19
.
29.
Volk
,
T.
,
Fessler
,
L. I.
, and
Fessler
,
J. H.
,
1990
, “
A Role for Integrin in the Formation of Sarcomeric Cytoarchitecture
,”
Cell
,
63
(
3
), pp.
525
536
.
30.
Sadd
,
M.
,
2014
,
Elasticity: Theory, Applications, and Numerics
,
Academic Press
, Cambridge, MA.
31.
Banerjee
,
S.
, and
Marchetti
,
M. C.
,
2012
, “
Contractile Stresses in Cohesive Cell Layers on Finite-Thickness Substrates
,”
Phys. Rev. Lett.
,
109
(
10
), pp.
1
5
.
32.
Mertz
,
A. F.
,
Che
,
Y.
,
Banerjee
,
S.
,
Goldstein
,
J. M.
,
Rosowski
,
K. A.
, and
Revilla
,
S. F.
,
2013
, “
Cadherin-Based Intercellular Adhesions Organize Epithelial Cell–Matrix Traction Forces
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
3
), pp.
842
847
.
33.
Riveline
,
D.
,
Zamir
,
E.
,
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Ishizaki
,
T.
,
Narumiya
,
S.
,
Kam
,
Z.
,
Geiger
,
B.
, and
Bershadsky
,
A. D.
,
2001
, “
Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an mDia1-Dependent and ROCK-Independent Mechanism
,”
J. Cell Biol.
,
153
(
6
), pp.
1175
1185
.
34.
Sato
,
Y.
,
Nakajima
,
S.
,
Shiraga
,
N.
,
Atsumi
,
H.
,
Yoshida
,
S.
,
Koller
,
T.
,
Gerig
,
G.
, and
Kikinis
,
R.
,
1998
, “
Three-Dimensional Multi-Scale Line Filter for Segmentation and Visualization of Curvilinear Structures in Medical Images
,”
Med. Image Anal.
,
2
(
2
), pp.
143
168
.
35.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J.-Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.
36.
Nelson
,
C. M.
,
Jean
,
R. P.
,
Tan
,
J. L.
,
Liu
,
W. F.
,
Sniadecki
,
N. J.
,
Spector
,
A. A.
, and
Chen
,
C. S.
,
2005
, “
Emergent Patterns of Growth Controlled by Multicellular Form and Mechanics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
33
), pp.
11594
11599
.
37.
McCain
,
M. L.
,
Lee
,
H.
,
Aratyn-Schaus
,
Y.
,
Kléber
,
A. G.
, and
Parker
,
K. K.
,
2012
, “
Cooperative Coupling of Cell-Matrix and Cell–Cell Adhesions in Cardiac Muscle
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
25
), pp.
9881
9886
.
38.
Dabiri
,
G. A.
,
Turnacioglu
,
K. K.
,
Sanger
,
J. M.
, and
Sanger
,
J. W.
,
1997
, “
Myofibrillogenesis Visualized in Living Embryonic Cardiomyocytes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
17
), pp.
9493
9498
.
39.
Chopra
,
A.
,
Tabdanov
,
E.
,
Patel
,
H.
,
Janmey
,
P. A.
, and
Kresh
,
J. Y.
,
2011
, “
Cardiac Myocyte Remodeling Mediated by N-Cadherin-Dependent Mechanosensing
,”
Am. J. Physiol. Heart Circ. Physiol.
,
300
(
4
), pp.
H1252
H1266
.
40.
Sim
,
J. Y.
,
Moeller
,
J.
,
Hart
,
K. C.
,
Ramallo
,
D.
,
Vogel
,
V.
,
Dunn
,
A. R.
,
Nelson
,
W. J.
, and
Pruitt
,
B. L.
,
2015
, “
Spatial Distribution of Cell-Cell and Cell-ECM Adhesions Regulates Force Balance While Main Taining E-Cadherin Molecular Tension in Cell Pairs
,”
Mol. Biol. Cell
,
26
(
13
), pp.
2456
2465
.
41.
Fyhrie
,
D. P.
, and
Carter
,
D. R.
,
1986
, “
A Unifying Principle Relating Stress to Trabecular Bone Morphology
,”
J. Orthop. Res.
,
4
(
3
), pp.
304
317
.
42.
Hamant
,
O.
,
Heisler
,
M. G.
,
Jönsson
,
H.
,
Krupinski
,
P.
,
Uyttewaal
,
M.
,
Bokov
,
P.
,
Corson
,
F.
,
Sahlin
,
P.
,
Boudaoud
,
A.
,
Meyerowitz
,
E. M.
,
Couder
,
Y.
, and
Traas
,
J.
,
2008
, “
Developmental Patterning by Mechanical Signals in Arabidopsis
,”
Science
,
322
(
5908
), pp.
1650
1655
.
43.
Lee
,
L. C.
,
Kassab
,
G. S.
, and
Guccione
,
J. M.
,
2016
, “
Mathematical Modeling of Cardiac Growth and Remodeling
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
,
8
(
3
), pp.
211
226
.
44.
Engler
,
A. J.
,
Carag-Krieger
,
C.
,
Johnson
,
C. P.
,
Raab
,
M.
,
Tang
,
H.-Y.
,
Speicher
,
D. W.
,
Sanger
,
J. W.
,
Sanger
,
J. M.
, and
Discher
,
D. E.
,
2008
, “
Embryonic Cardiomyocytes Beat Best on a Matrix With Heart-Like Elasticity: Scar-Like Rigidity Inhibits Beating
,”
J. Cell Sci.
,
121
(
Pt. 22
), pp.
3794
3802
.
You do not currently have access to this content.