Predictive simulations of the mastication system would significantly improve our understanding of temporomandibular joint (TMJ) disorders and the planning of cranio-maxillofacial surgery procedures. Respective computational models must be validated by experimental data from in vivo characterization of the mastication system's mechanical response. The present pilot-study demonstrates the feasibility of a combined experimental and numerical procedure to validate a computer model of the masseter muscle. An experimental setup is proposed that provides a simultaneous bite force measurement and ultrasound-based visualization of muscle deformation. The direct comparison of the experimentally observed and numerically predicted muscle response demonstrates the predictive capabilities of such anatomically accurate biting models. Differences between molar and incisor biting are investigated; muscle deformation is recorded for three different bite forces in order to capture the effect of increasing muscle fiber recruitment. The three-dimensional (3D) muscle deformation at each bite position and force-level is approximatively reconstructed from ultrasound measurements in five distinct cross-sectional areas (four horizontal and one vertical cross section). The experimental work is accompanied by numerical simulations to validate the predictive capabilities of a constitutive muscle model previously formulated. An anatomy-based, fully 3D model of the masseter muscle is created from magnetic resonance images (MRI) of the same subject. The direct comparison of experimental and numerical results revealed good agreement for maximum bite forces and masseter deformations in both biting positions. The present work therefore presents a feasible in vivo measurement system to validate numerically predicted masseter muscle contractions during mastication.

References

References
1.
Chaves
,
T. C.
,
dos Santos Aguiar
,
A.
,
Felicio
,
L. R.
,
Greghi
,
S. M.
,
Regalo
,
S. C. H.
, and
Bevilaqua-Grossi
,
D.
,
2017
, “
Electromyographic Ratio of Masseter and Anterior Temporalis Muscles in Children With and Without Temporomandibular Disorders
,”
Int. J. Pediatr. Otorhinolaryngol.
,
97
, pp.
35
41
.
2.
Cheng
,
H.-Y.
,
Peng
,
P.-W.
,
Lin
,
Y.-J.
,
Chang
,
S.-T.
,
Pan
,
Y.-N.
,
Lee
,
S.-C.
,
Ou
,
K.-L.
, and
Hsu
,
W.-C.
,
2013
, “
Stress Analysis During Jaw Movement Based on Vivo Computed Tomography Images From Patients With Temporomandibular Disorders
,”
Int. J. Oral Maxillofac. Surg.
,
42
(
3
), pp.
386
392
.
3.
Commisso
,
M.
,
Martínez-Reina
,
J.
,
Ojeda
,
J.
, and
Mayo
,
J.
,
2015
, “
Finite Element Analysis of the Human Mastication Cycle
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
23
35
.
4.
Ackland
,
D. C.
,
Robinson
,
D.
,
Redhead
,
M.
,
Lee
,
P. V. S.
,
Moskaljuk
,
A.
, and
Dimitroulis
,
G.
,
2017
, “
A Personalized 3D-Printed Prosthetic Joint Replacement for the Human Temporomandibular Joint: From Implant Design to Implantation
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
404
411
.
5.
Narra
,
N.
,
Valášek
,
J.
,
Hannula
,
M.
,
Marcián
,
P.
,
Sándor
,
G.
,
Hyttinen
,
J.
, and
Wolff
,
J.
,
2014
, “
Finite Element Analysis of Customized Reconstruction Plates for Mandibular Continuity Defect Therapy
,”
J. Biomech.
,
47
(
1
), pp.
264
268
.
6.
Martinez Choy
,
S.
,
Lenz
,
J.
,
Schweizerhof
,
K.
,
Schmitter
,
M.
, and
Schindler
,
H.
,
2017
, “
Realistic Kinetic Loading of the Jaw System During Single Chewing Cycles: A Finite Element Study
,”
J. Oral Rehabil.
,
44
(
5
), pp.
375
384
.
7.
Hirose
,
M.
,
Tanaka
,
E.
,
Tanaka
,
M.
,
Fujita
,
R.
,
Kuroda
,
Y.
,
Yamano
,
E.
,
Van Eijden
,
T.
, and
Tanne
,
K.
,
2006
, “
Three-Dimensional Finite-Element Model of the Human Temporomandibular Joint Disc During Prolonged Clenching
,”
Eur. J. Oral Sci.
,
114
(
5
), pp.
441
448
.
8.
Mowlavi
,
S.
,
Engmann
,
J.
,
Burbidge
,
A.
,
Lloyd
,
R.
,
Hayoun
,
P.
,
Le Reverend
,
B.
, and
Ramaioli
,
M.
,
2016
, “
In Vivo Observations and In Vitro Experiments on the Oral Phase of Swallowing of Newtonian and Shear-Thinning Liquids
,”
J. Biomech.
,
49
(
16
), pp.
3788
3795
.
9.
Hayoun
,
P.
,
Engmann
,
J.
,
Mowlavi
,
S.
,
Le Révérend
,
B.
,
Burbidge
,
A.
, and
Ramaioli
,
M.
,
2015
, “
A Model Experiment to Understand the Oral Phase of Swallowing of Newtonian Liquids
,”
J. Biomech.
,
48
(
14
), pp.
3922
3928
.
10.
Le Révérend
,
B.
,
Saucy
,
F.
,
Moser
,
M.
, and
Loret
,
C.
,
2016
, “
Adaptation of Mastication Mechanics and Eating Behaviour to Small Differences in Food Texture
,”
Physiol. Behav.
,
165
, pp.
136
145
.
11.
Osborn
,
J.
, and
Baragar
,
F.
,
1985
, “
Predicted Pattern of Human Muscle Activity During Clenching Derived From a Computer Assisted Model: Symmetric Vertical Bite Forces
,”
J. Biomech.
,
18
(
8
), pp.
599
612
.
12.
Koolstra
,
J.
, and
Van Eijden
,
T.
,
2001
, “
A Method to Predict Muscle Control in the Kinematically and Mechanically Indeterminate Human Masticatory System
,”
J. Biomech.
,
34
(
9
), pp.
1179
1188
.
13.
Hannam
,
A.
,
Stavness
,
I.
,
Lloyd
,
J.
, and
Fels
,
S.
,
2008
, “
A Dynamic Model of Jaw and Hyoid Biomechanics During Chewing
,”
J. Biomech.
,
41
(
5
), pp.
1069
1076
.
14.
Osborn
,
J.
,
1996
, “
Features of Human Jaw Design Which Maximize the Bite Force
,”
J. Biomech.
,
29
(
5
), pp.
589
595
.
15.
Le Révérend
,
B.
, and
Hartmann
,
C.
,
2014
, “
Numerical Modeling of Human Mastication, a Simplistic View to Design Foods Adapted to Mastication Abilities
,”
Physiol. Behav.
,
124
, pp.
61
64
.
16.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London Ser. B
,
126
(
843
), pp.
136
195
.
17.
Van Eijden
,
T.
, and
Raadsheer
,
M.
,
1992
, “
Heterogeneity of Fiber and Sarcomere Length in the Human Masseter Muscle
,”
Anat. Rec.
,
232
(
1
), pp.
78
84
.
18.
Van Eijden
,
T.
,
Korfage
,
J.
, and
Brugman
,
P.
,
1997
, “
Architecture of the Human Jaw-Closing and Jaw-Opening Muscles
,”
Anat. Rec.
,
248
(
3
), pp.
464
474
.
19.
Gröning
,
F.
,
Jones
,
M. E.
,
Curtis
,
N.
,
Herrel
,
A.
,
O'Higgins
,
P.
,
Evans
,
S. E.
, and
Fagan
,
M. J.
,
2013
, “
The Importance of Accurate Muscle Modelling for Biomechanical Analyses: A Case Study With a Lizard Skull
,”
J. R. Soc. Interface
,
10
(
84
), p.
20130216
.
20.
Böl
,
M.
,
Ehret
,
A. E.
,
Leichsenring
,
K.
,
Weichert
,
C.
, and
Kruse
,
R.
,
2014
, “
On the Anisotropy of Skeletal Muscle Tissue Under Compression
,”
Acta Biomater.
,
10
(
7
), pp.
3225
3234
.
21.
Hodgson
,
J. A.
,
Chi
,
S.-W.
,
Yang
,
J. P.
,
Chen
,
J.-S.
,
Edgerton
,
V. R.
, and
Sinha
,
S.
,
2012
, “
Finite Element Modeling of Passive Material Influence on the Deformation and Force Output of Skeletal Muscle
,”
J. Mech. Behav. Biomed Mater.
,
9
, pp.
163
183
.
22.
Commisso
,
M.
,
Calvo-Gallego
,
J.
,
Mayo
,
J.
,
Tanaka
,
E.
, and
Martínez-Reina
,
J.
,
2016
, “
Quasi-Linear Viscoelastic Model of the Articular Disc of the Temporomandibular Joint
,”
Exp. Mech.
,
56
(
7
), pp.
1169
1177
.
23.
Iwasaki
,
L.
,
Gonzalez
,
Y.
,
Liu
,
Y.
,
Liu
,
H.
,
Markova
,
M.
,
Gallo
,
L.
, and
Nickel
,
J.
,
2017
, “
TMJ Energy Densities in Healthy Men and Women
,”
Osteoarthritis Cartilage
,
25
(
6
), pp.
846
849
.
24.
Lamela
,
M. J.
,
Pelayo
,
F.
,
Ramos
,
A.
,
Fernández-Canteli
,
A.
, and
Tanaka
,
E.
,
2013
, “
Dynamic Compressive Properties of Articular Cartilages in the Porcine Temporomandibular Joint
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
62
70
.
25.
Berranen
,
Y.
,
Hayashibe
,
M.
,
Guiraud
,
D.
, and
Gilles
,
B.
,
2014
, “
Real-Time Muscle Deformation Via Decoupled Modeling of Solid and Muscle Fiber Mechanics
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
(
MICCAI
), Boston, MA, Sept. 14–18, pp.
65
72
.
26.
Böl
,
M.
,
Leichsenring
,
K.
,
Weichert
,
C.
,
Sturmat
,
M.
,
Schenk
,
P.
,
Blickhan
,
R.
, and
Siebert
,
T.
,
2013
, “
Three-Dimensional Surface Geometries of the Rabbit Soleus Muscle During Contraction: Input for Biomechanical Modelling and Its Validation
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1205
1220
.
27.
Röhrle
,
O.
, and
Pullan
,
A.
,
2007
, “
Three-Dimensional Finite Element Modelling of Muscle Forces During Mastication
,”
J. Biomech.
,
40
(
15
), pp.
3363
3372
.
28.
Weickenmeier
,
J.
,
Itskov
,
M.
,
Mazza
,
E.
, and
Jabareen
,
M.
,
2014
, “
A Physically Motivated Constitutive Model for 3D Numerical Simulation of Skeletal Muscles
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
5
), pp.
545
562
.
29.
Ehret
,
A. E.
,
Böl
,
M.
, and
Itskov
,
M.
,
2011
, “
A Continuum Constitutive Model for the Active Behaviour of Skeletal Muscle
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
625
636
.
30.
Barbarino
,
G.
,
Jabareen
,
M.
,
Trzewik
,
J.
,
Nkengne
,
A.
,
Stamatas
,
G.
, and
Mazza
,
E.
,
2009
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Face
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
041006
.
31.
ABAQUS
,
2009
, “
Abaqus/Standard Analysis User's Manual
,” Dassault Systemes, Providence, RI.
32.
Mao
,
J.
, and
Osborn
,
J.
,
1994
, “
Direction of a Bite Force Determines the Pattern of Activity in Jaw-Closing Muscles
,”
J. Dent. Res.
,
73
(
5
), pp.
1112
1120
.
33.
Kubo
,
K.
,
Kawata
,
T.
,
Ogawa
,
T.
,
Watanabe
,
M.
, and
Sasaki
,
K.
,
2006
, “
Outer Shape Changes of Human Masseter With Contraction by Ultrasound Morphometry
,”
Arch. Oral Biol.
,
51
(
2
), pp.
146
153
.
34.
McMillan
,
A.
, and
Hannam
,
A.
,
1992
, “
Task-Related Behaviour of Motor Units in Different Regions of the Human Masseter Muscle
,”
Arch. Oral Biol.
,
37
(
10
), pp.
849
857
.
35.
Williams
,
P.
,
1995
,
Gray's Anatomy: The Anatomical Basis of Medicine and Surgery
,
Churchill Livingstone
,
New York
.
36.
Corless
,
R.
,
Gonnet
,
G.
,
Hare
,
D.
,
Jeffrey
,
D.
, and
Knuth
,
D.
,
1996
, “
On the Lambert W Function
,”
Adv. Comput. Math.
,
5
(
4
), pp.
329
359
.
37.
Weickenmeier
,
J.
,
Wu
,
R.
,
Lecomte-Grosbras
,
P.
,
Witz
,
J.-F.
,
Brieu
,
M.
,
Winklhofer
,
S.
,
Andreisek
,
G.
, and
Mazza
,
E.
,
2014
, “
Experimental Characterization and Simulation of Layer Interaction in Facial Soft Tissues
,” International Symposium on Biomedical Simulation (
ISBMS
), Strasbourg, France, Oct. 16–17, pp.
233
241
.
38.
Serra
,
M.
,
Duarte Gaviao
,
M.
, and
dos Santos Uchoa
,
M.
,
2008
, “
The Use of Ultrasound in the Investigation of the Muscles of Mastication
,”
Ultrasound Med. Biol.
,
34
(
12
), pp.
1875
1884
.
39.
Raadsheer
,
M.
,
Van Eijden
,
T.
,
Van Spronsen
,
P.
,
Van Ginkel
,
F.
,
Kiliaridis
,
S.
, and
Prahl-Andersen
,
B.
,
1994
, “
A Comparison of Human Masseter Muscle Thickness Measured by Ultrasonography and Magnetic Resonance Imaging
,”
Arch. Oral Biol.
,
39
(
12
), pp.
1079
1084
.
40.
Goto
,
T.
,
Langenbach
,
G.
, and
Hannam
,
A.
,
2001
, “
Length Changes in the Human Masseter Muscle After Jaw Movement
,”
Anat. Rec.
,
262
(
3
), pp.
293
300
.
41.
Palinkas
,
M.
,
Nassar
,
M.
,
Cecílio
,
F.
,
Siéssere
,
S.
,
Semprini
,
M.
,
Machado-de Sousa
,
J.
,
Hallak
,
J.
, and
Regalo
,
S.
,
2010
, “
Age and Gender Influence on Maximal Bite Force and Masticatory Muscles Thickness
,”
Arch. Oral Biol.
,
55
(
10
), pp.
797
802
.
42.
Paphangkorakit
,
J.
, and
Osborn
,
J.
,
1997
, “
The Effect of Pressure on a Maximum Incisal Bite Force in Man
,”
Arch. Oral Biol.
,
42
(
1
), pp.
11
17
.
43.
Varga
,
S.
,
Spalj
,
S.
,
Varga
,
M.
,
Milosevic
,
S.
,
Mestrovic
,
S.
, and
Slaj
,
M.
,
2011
, “
Maximum Voluntary Molar Bite Force in Subjects With Normal Occlusion
,”
Eur. J. Orthod.
,
33
(
4
), pp.
427
433
.
44.
Marková
,
M.
, and
Gallo
,
L. M.
,
2016
, “
The Influence of the Human TMJ Eminence Inclination on Predicted Masticatory Muscle Forces
,”
Hum. Mov. Sci.
,
49
, pp.
132
140
.
45.
van Dijk
,
J.
,
Eiglsperger
,
U.
,
Hellmann
,
D.
,
Giannakopoulos
,
N.
,
McGill
,
K.
,
Schindler
,
H.
, and
Lapatki
,
B.
,
2016
, “
Motor Unit Activity Within the Depth of the Masseter Characterized by an Adapted Scanning EMG Technique
,”
Clin. Neurophysiol.
,
127
(
9
), pp.
3198
3204
.
46.
Politti
,
F.
,
Casellato
,
C.
,
Kalytczak
,
M. M.
,
Garcia
,
M. B. S.
, and
Biasotto-Gonzalez
,
D. A.
,
2016
, “
Characteristics of EMG Frequency Bands in Temporomandibullar Disorders Patients
,”
J. Electromyography Kinesiology
,
31
, pp.
119
125
.
47.
Shimada
,
A.
,
Baad-Hansen
,
L.
, and
Svensson
,
P.
,
2015
, “
Effect of Experimental Jaw Muscle Pain on Dynamic Bite Force During Mastication
,”
Arch. Oral Biol.
,
60
(
2
), pp.
256
266
.
48.
Dutra
,
E. H.
,
Caria
,
P. H.
,
Rafferty
,
K. L.
, and
Herring
,
S. W.
,
2010
, “
The Buccinator During Mastication: A Functional and Anatomical Evaluation in Minipigs
,”
Arch. Oral Biol.
,
55
(
9
), pp.
627
638
.
You do not currently have access to this content.