The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.

References

References
1.
Hammoudeh
,
J. A.
,
Howell
,
L. K.
,
Boutros
,
S.
,
Scott
,
M. A.
, and
Urata
,
M. M.
,
2015
, “
Current Status of Surgical Planning for Orthognathic Surgery: Traditional Methods Versus 3D Surgical Planning
,”
Plast. Reconstr. Surg. Global Open
,
3
(
2
), p.
e307
.
2.
Pujol
,
S.
,
Baldwin
,
M.
,
Nassiri
,
J.
,
Kikinis
,
R.
, and
Shaffer
,
K.
,
2016
, “
Using 3D Modeling Techniques to Enhance Teaching of Difficult Anatomical Concepts
,”
Acad. Radiol.
,
23
(
4
), pp.
507
516
.
3.
Jimenez-Delgado
,
J. J.
,
Paulano-Godino
,
F.
,
PulidoRam-Ramirez
,
R.
, and
Jimenez-Perez
,
J. R.
,
2016
, “
Computer Assisted Preoperative Planning of Bone Fracture Reduction: Simulation Techniques and New Trends
,”
Med. Image Anal.
,
30
(5), pp.
30
45
.
4.
Wang
,
M. J.
,
Li
,
H. L.
,
Si
,
J. W.
,
Wang
,
X. D.
,
Shen
,
S. G. F.
, and
Yu
,
H. B.
,
2016
, “
The Application of Digital Model Surgery in the Treatment of Dento-Maxillofacial Deformities
,”
Int. J. Clin. Exp. Med.
,
9
(
2
), pp.
1808
1814
.
5.
Adolphs
,
N.
,
Liu
,
W.
,
Keeve
,
E.
, and
Hoffmeister
,
B.
,
2013
, “
Craniomaxillofacial Surgery Planning Based on 3D Models Derived From Cone-Beam CT Data
,”
Comput. Aided Surg.
,
18
(
5–6
), pp.
101
108
.
6.
Liu
,
Y. F.
,
Liao
,
W. Q.
,
Jin
,
G. S.
,
Yang
,
Q. M.
, and
Peng
,
W.
,
2014
, “
Additive Manufacturing and Digital Design Assisted Precise Apicoectomy: A Case Study
,”
Rapid Prototyping J.
,
20
(
1
), pp.
33
40
.
7.
Liu
,
Y.-F.
,
Xu
,
L.-W.
,
Zhu
,
H.-Y.
, and
Liu
,
S. S.-Y.
,
2014
, “
Technical Procedures for Template-Guided Surgery for Mandibular Reconstruction Based on Digital Design and Manufacturing
,”
Biomed. Eng. Online
,
13
, p.
63
.
8.
Hart
,
R. T.
,
Hennebel
,
V. V.
,
Thongpreda
,
N.
,
Van Buskira
,
W. C.
, and
Anderson
,
R. C.
,
1992
, “
Modeling the Biomechanics of the Mandible: A Three-Dimensional Finite Element Study
,”
J. Biomech.
,
25
(
3
), pp.
261
286
.
9.
Vollmer
,
D.
,
Meyer
,
U.
,
Joos
,
U.
,
Vegh
,
A.
, and
Piffko
,
J.
,
2000
, “
Experimental and Finite Element Study of a Human Manbile
,”
J. Cranio-Maxillofac. Surg.
,
28
(
2
), pp.
91
96
.
10.
Singh
,
P.
,
Wang
,
C.
,
Ajmera
,
D. H.
,
Xiao
,
S. S.
,
Song
,
J.
, and
Ling
,
Z.
,
2016
, “
Biomechanical Effects of Novel Osteotomy Approaches on Mandibular Expansion: A Three-Dimensional Finite Element Analysis
,”
J. Oral Maxillofac. Surg.
,
74
(
8
), pp.
1658.e1
1658.e15
.
11.
Hylander
,
W.
,
1984
, “
Stress and Strain in the Mandible Symphysis of Primates: A Test of Competing Hypotheses
,”
Am. J. Phys. Anthropol.
,
64
(
1
), pp.
1
46
.
12.
Groning
,
F.
,
Liu
,
J.
,
Fagan
,
M. J.
, and
O'Higgins
,
P.
,
2009
, “
Validating a Voxel-Based Finite Element Model of a Human Mandible Using Digital Speckle Pattern Interferometry
,”
J. Biomech.
,
42
(
9
), pp.
1224
1229
.
13.
Liao
,
S. H.
,
Tong
,
R. F.
, and
Dong
,
J. X.
,
2007
, “
Anisotropic Finite Element Modeling for Patient-Specific Mandible
,”
Comput. Methods Programs Biomed.
,
88
(
3
), pp.
197
209
.
14.
de Zee
,
M.
,
Dalstra
,
M.
,
Cattaneo
,
P. M.
,
Rasmussen
,
J.
,
Svensson
,
P.
, and
Melsen
,
B.
,
2007
, “
Validation of a Musculo-Skeletal Model of the Mandible and Its Application to Mandibular Distraction Osteogenesis
,”
J.Biomech.
,
40
(
6
), pp.
1192
1201
.
15.
Shah
,
J. J.
, and
Mantyla
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM Concepts, Techniques, Applications
,
Wiley
,
Chichester
, UK.
16.
Chaudhary
,
N.
,
Lovald
,
S. T.
,
Wagner
,
J.
,
Khraishi
,
T.
, and
Baack
,
B.
,
2008
, “
Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures
,”
Model. Simul. Eng.
,
2008
(3), p.
628120
.
17.
Kan
,
B.
,
Coskunses
,
F. M.
,
Mutlu
,
I.
,
Ugur
,
L.
, and
Meral
,
D. G.
,
2015
, “
Effects of Inter-Implant Distance and Implant Length on the Response to Frontal Traumatic Force of Two Anterior Implants in an Atrophic Mandible: Three-Dimensional Finite Element Analysis
,”
Int. J. Oral Maxillofac. Surg.
,
44
(
7
), pp.
908
913
.
18.
Davis
,
M. L.
,
Vavalle
,
N. A.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
A Technique for Developing CAD Geometry of Long Bones Using Clinical CT Data
,”
Med. Eng. Phys.
,
37
(
11
), pp.
1116
1123
.
19.
Bujtar
,
P.
,
Sandor
,
G. K. B.
,
Bojtos
,
A.
,
Szucs
,
A.
, and
Barabas
,
J.
,
2010
, “
Finite Element Analysis of the Human Mandible at 3 Different Stages of Life
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol.
,
110
(
3
), pp.
301
309
.
20.
Szucs
,
A.
,
Bujtar
,
P.
,
Sandor
,
G. K. B.
, and
Barabas
,
J.
,
2010
, “
Finite Element Analysis of the Human Mandible to Assess the Effect of Removing an Impacted Third Molar
,”
J. Can. Dent.Assoc.
,
76
(
a72
), pp.
1
7
.
21.
Lin
,
D.
,
Li
,
Q.
,
Li
,
W.
,
Duckmanton
,
N.
, and
Swain
,
M.
,
2010
, “
Mandibular Bone Remodeling Induced by Dental Implant
,”
J. Biomech.
,
43
(
2
), pp.
287
293
.
22.
Morvan
,
J. M.
, and
Thibert
,
B.
,
2002
, “
Smooth Surface and Triangular Mesh: Comparison of the Area, the Normals and the Unfolding
,”
Seventh ACM Symposium of Solid Modeling and Applications
(
SMA
), Saarbrücken, Germany, June 17–21, pp.
147
158
.
23.
Attene
,
M.
,
Falcidieno
,
B.
,
Spagnuolo
,
M.
, and
Wyvill
,
G.
,
2003
, “
A Mapping-Independent Primitive for the Triangulation of Parametric Surfaces
,”
Gr. Models
,
65
(
5
), pp.
260
273
.
24.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD
,
5th ed.
,
Morgan Kaufmann Publishers
,
San Francisco, CA
.
25.
Ko
,
K. H.
,
2003
, “
Algorithms for Three-Dimensional Free-Form Object Matching
,”
Ph.D. dissertation
, Massachusetts Institute of Technology, Cambridge, MA.
26.
Piegl
,
L.
, and
Tille
,
W.
,
1995
,
The NURBS Book
,
Springer-Verlag
,
Berlin
.
27.
Rice
,
J. C.
,
1988
, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on the Apparent Density
,”
J. Biomech.
,
21
(
2
), pp.
155
168
.
28.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.
29.
Bezerra
,
T. P.
,
Silva
,
F.
,
Scarparo
,
H. C.
,
Costa
,
F. W.
, and
Studart-Soares
,
E. C.
,
2013
, “
Do Erupted Third Molars Weaken the Mandibular Angle After Trauma to the Chin Region? A 3D Finite Element Study
,”
Int. J. Oral. Maxillofac. Surg.
,
42
(
4
), pp.
474
480
.
30.
Antic
,
S.
,
Vukicevic
,
A. M.
,
Milasinovic
,
M.
,
Savejic
,
I.
,
Jovicic
,
G.
,
Filipovic
,
N.
,
Rakocevic
,
Z.
, and
Djuric
,
M.
,
2015
, “
Impact of the Lower Third Molar Presence and Position on the Fragility of Mandibular Angle and Condyle: A Three-dimensional Finite Element Study
,”
J. Cranio-Maxillofac. Surg.
,
43
(
6
), pp.
870
878
.
31.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nat. Mater.
,
2
(
3
), pp.
164
168
.
32.
Evans
,
G. F.
,
1976
, “
Mechanical Properties and Histology of Cortical Bone From Younger and Older Men
,”
Anat. Rec.
,
185
(
1
), pp.
1
11
.
33.
de Mello Santos
,
L. S.
,
Rossi
,
A. C.
,
Freire
,
A. R.
,
Matoso
,
R. I.
,
Caria
,
P. H. F.
, and
Prado
,
F. B.
,
2015
, “
Finite-Element Analysis of 3 Situations of Trauma in the Human Edentulous Mandible
,”
J. Oral Maxillofac. Surg.
,
73
(
4
), pp.
683
691
.
34.
Provatidis
,
C.
,
Georgiopoulos
,
B.
,
Kotinas
,
A.
, and
McDonald
,
J. P.
,
2007
, “
On the FEM Modeling of Craniofacial Changes During Rapid Maxillary Expansion
,”
Med. Eng. Phys.
,
29
(
5
), pp.
566
579
.
35.
Ainsworth
,
M.
, and
Oden
,
J. T.
,
1997
, “
A Posteriori Error Estimation in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
1–2
), pp.
1
88
.
36.
Magne
,
P.
,
2007
, “
Efficient 3D Finite Element Analysis of Dental Restorative Procedures Using Micro-CT Data
,”
Dent. Mater.
,
23
(
5
), pp.
539
548
.
You do not currently have access to this content.