Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver’s modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the “true” accuracy of a CFD solver.

References

References
1.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.
2.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
,
2003
, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
Am. J. Neuroradiology
,
24
(
4
), pp.
559
566
.
3.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
,
2005
, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
Am. J. Neuroradiology
,
26
(
10
), pp.
2550
2559
.
4.
Longest
,
P. W.
, and
Vinchurkar
,
S.
,
2007
, “
Validating CFD Predictions of Respiratory Aerosol Deposition: Effects of Upstream Transition and Turbulence
,”
J. Biomech.
,
40
(
2
), pp.
305
316
.
5.
Min
,
J. K.
,
Leipsic
,
J.
,
Pencina
,
M. J.
,
Berman
,
D. S.
,
Koo
,
B.-K.
,
van Mieghem
,
C.
,
Erglis
,
A.
,
Lin
,
F. Y.
,
Dunning
,
A. M.
, and
Apruzzese
,
P.
,
2012
, “
Diagnostic Accuracy of Fractional Flow Reserve From Anatomic CT Angiography
,”
JAMA
,
308
(
12
), pp.
1237
1245
.
6.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.
7.
Larrabide
,
I.
,
Villa-Uriol
,
M. C.
,
Cardenes
,
R.
,
Barbarito
,
V.
,
Carotenuto
,
L.
,
Geers
,
A. J.
,
Morales
,
H. G.
,
Pozo
,
J. M.
,
Mazzeo
,
M. D.
,
Bogunovic
,
H.
,
Omedas
,
P.
,
Riccobene
,
C.
,
Macho
,
J. M.
, and
Frangi
,
A. F.
,
2012
, “
AngioLab—A Software Tool for Morphological Analysis and Endovascular Treatment Planning of Intracranial Aneurysms
,”
Comput. Methods Programs Biomed.
,
108
(
2
), pp.
806
819
.
8.
Xiang
,
J.
,
Antiga
,
L.
,
Varble
,
N.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2016
, “
AView: An Image-Based Clinical Computational Tool for Intracranial Aneurysm Flow Visualization and Clinical Management
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1085
1096
.
9.
Villa-Uriol
,
M. C.
,
Berti
,
G.
,
Hose
,
D. R.
,
Marzo
,
A.
,
Chiarini
,
A.
,
Penrose
,
J.
,
Pozo
,
J.
,
Schmidt
,
J. G.
,
Singh
,
P.
,
Lycett
,
R.
,
Larrabide
,
I.
, and
Frangi
,
A. F.
,
2011
, “
@neurIST Complex Information Processing Toolchain for the Integrated Management of Cerebral Aneurysms
,”
Interface Focus
,
1
(
3
), pp.
308
319
.
10.
Sheng
,
J.
,
Meng
,
H.
, and
Fox
,
R. O.
,
1998
, “
Validation of CFD Simulations of a Stirred Tank Using Particle Image Velocimetry Data
,”
Can. J. Chem. Eng.
,
76
(
3
), pp.
611
625
.
11.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
,
2006
, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
844
851
.
12.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
DeMont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021015
.
13.
Raschi
,
M.
,
Mut
,
F.
,
Byrne
,
G.
,
Putman
,
C. M.
,
Tateshima
,
S.
,
Viñuela
,
F.
,
Tanoue
,
T.
,
Tanishita
,
K.
, and
Cebral
,
J. R.
,
2012
, “
CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
2
), pp.
214
228
.
14.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Standard No.
ASME-V&V-20-2009
.
15.
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Stewart
,
S. F. C.
,
Myers
,
M. R.
,
Berman
,
M. R.
,
Burgreen
,
G. W.
,
Paterson
,
E. G.
, and
Malinauskas
,
R. A.
,
2011
, “
Multilaboratory Particle Image Velocimetry Analysis of the FDA Benchmark Nozzle Model to Support Validation of Computational Fluid Dynamics Simulations
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041002
.
16.
Coleman
,
H.
, and
Stern
,
F.
,
1997
, “
Uncertainties and CFD Code Validation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
795
803
.
17.
BIPM,
1995
, “
Guide to the Expression of Uncertainty in Measurement
,” Bureau International des Poids et Mesures, Paris, France.
18.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses In a Masonry Dam
,”
Trans. R. Soc. London
,
210
(459–470), pp.
307
357
.
19.
Richardson
,
L. F.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. London
,
226
(636–646), pp.
299
361
.
20.
Eça
,
L.
, and
Hoekstra
,
M.
,
2003
, “
An Evaluation of Verification Procedures for CFD Applications
,”
24th Symposium on Naval Hydrodynamics
, Fukuoka, Japan, July 8–13, pp.
8
13
.
21.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.
22.
Kerber
,
C. W.
, and
Heilman
,
C. B.
,
1992
, “
Flow Dynamics in the Human Carotid Artery—I: Preliminary Observations Using a Transparent Elastic Model
,”
Am. J. Neuroradiology
,
13
(
1
), pp.
173
180
.
23.
Yousif
,
M. Y.
,
Holdsworth
,
D. W.
, and
Poepping
,
T. L.
,
2011
, “
A Blood-Mimicking Fluid for Particle Image Velocimetry With Silicone Vascular Models
,”
Exp. Fluids
,
50
(
3
), pp.
769
774
.
24.
Hopkins
,
L.
,
Kelly
,
J.
,
Wexler
,
A.
, and
Prasad
,
A.
,
2000
, “
Particle Image Velocimetry Measurements in Complex Geometries
,”
Exp. Fluids
,
29
(
1
), pp.
91
95
.
25.
Zhao
,
M.
,
Amin-Hanjani
,
S.
,
Ruland
,
S.
,
Curcio
,
A.
,
Ostergren
,
L.
, and
Charbel
,
F.
,
2007
, “
Regional Cerebral Blood Flow Using Quantitative MR Angiography
,”
Am. J. Neuroradiology
,
28
(
8
), pp.
1470
1473
.
26.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
27.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
, New York.
28.
Stewart
,
S. F.
,
Hariharan
,
P.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Reddy
,
V.
,
Day
,
S. W.
,
Giarra
,
M.
,
Manning
,
K. B.
,
Deutsch
,
S.
, and
Berman
,
M. R.
,
2013
, “
Results of FDA’s First Interlaboratory Computational Study of a Nozzle With a Sudden Contraction and Conical Diffuser
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), pp.
374
391
.
29.
Stewart
,
S. F.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
, and
Berman
,
M. R.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA’s First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Technol.
,
3
(
2
), pp.
139
160
.
You do not currently have access to this content.