Progress toward understanding the underlying mechanisms of pelvic organ prolapse (POP) is limited, in part, due to a lack of information on the biomechanical properties and microstructural composition of the vaginal wall. Compromised vaginal wall integrity is thought to contribute to pelvic floor disorders; however, normal structure–function relationships within the vaginal wall are not fully understood. In addition to the information produced from uniaxial testing, biaxial extension–inflation tests performed over a range of physiological values could provide additional insights into vaginal wall mechanical behavior (i.e., axial coupling and anisotropy), while preserving in vivo tissue geometry. Thus, we present experimental methods of assessing murine vaginal wall biaxial mechanical properties using extension–inflation protocols. Geometrically intact vaginal samples taken from 16 female C57BL/6 mice underwent pressure–diameter and force–length preconditioning and testing within a pressure-myograph device. A bilinear curve fit was applied to the local stress–stretch data to quantify the transition stress and stretch as well as the toe- and linear-region moduli. The murine vaginal wall demonstrated a nonlinear response resembling that of other soft tissues, and evaluation of bilinear curve fits suggests that the vagina exhibits pseudoelasticity, axial coupling, and anisotropy. The protocols developed herein permit quantification of biaxial tissue properties. These methods can be utilized in future studies in order to assess evolving structure–function relationships with respect to aging, the onset of prolapse, and response to potential clinical interventions.

References

References
1.
Jelovsek
,
J.
,
Maher
,
C.
, and
Barber
,
M.
,
2007
, “
Pelvic Organ Prolapse
,”
Lancet
,
369
(
9566
), pp.
1027
1038
.
2.
Pizarro-Berdichevsky
,
J.
,
Clifton
,
M. M.
, and
Goldman
,
H. B.
,
2015
, “
Evaluation and Management of Pelvic Organ Prolapse in Elderly Women
,”
Clin. Geriatr. Med.
,
31
(
4
), pp.
507
521
.
3.
Hendrix
,
S. L.
,
Clark
,
A.
,
Nygaard
,
I.
,
Aragaki
,
A.
,
Barnabei
,
V.
, and
McTiernan
,
A.
,
2002
, “
Pelvic Organ Prolapse in the Women's Health Initiative: Gravity and Gravidity
,”
Am. J. Obstet. Gynecol.
,
186
(
6
), pp.
1160
1166
.
4.
Olsen
,
A. L.
,
Smith
,
V. J.
,
Bergstrom
,
J. O.
,
Colling
,
J. C.
, and
Clark
,
A. L.
,
1997
, “
Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence
,”
Obstet. Gynecol.
,
89
(
4
), pp.
501
506
.
5.
Subak
,
L. L.
,
Waetjen
,
L. E.
,
van den Eeden
,
S.
,
Thom
,
D. H.
,
Vittinghoff
,
E.
, and
Brown
,
J. S.
,
2001
, “
Cost of Pelvic Organ Prolapse Surgery in the United States
,”
Obstet. Gynecol.
,
98
(
4
), pp.
646
651
.
6.
DeLancey
,
J. O.
,
2005
, “
The Hidden Epidemic of Pelvic Floor Dysfunction: Achievable Goals for Improved Prevention and Treatment
,”
Am. J. Obstet. Gynecol.
,
192
(
5
), pp.
1488
1495
.
7.
DeLancey
,
J. O.
, and
Starr
,
R. A.
,
1990
, “
Histology of the Connection Between the Vagina and Levator Ani Muscles. Implications for Urinary Tract Function
,”
J. Reprod. Med.
,
35
(
8
), pp.
765
771
.https://www.ncbi.nlm.nih.gov/pubmed/2213737
8.
Tracy
,
P. V.
,
DeLancey
,
J. O.
, and
Ashton-Miller
,
J. A.
,
2016
, “
A Geometric Capacity-Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021001
.
9.
DeLancey
,
J. O.
,
Morgan
,
D. M.
,
Fenner
,
D. E.
,
Kearney
,
R.
,
Guire
,
K.
,
Miller
,
J. M.
,
Hussain
,
H.
,
Umek
,
W.
,
Hsu
,
Y.
, and
Ashton-Miller
,
J. A.
,
2007
, “
Comparison of Levator Ani Muscle Defects and Function in Women With and Without Pelvic Organ Prolapse
,”
Obstet. Gynecol.
,
109
(
2 Pt. 1
), pp.
295
302
.
10.
Miklos
,
J. R.
,
Moore
,
R. D.
, and
Kohli
,
N.
,
2002
, “
Laparoscopic Surgery for Pelvic Support Defects
,”
Curr. Opin. Obstet. Gynecol.
,
14
(
4
), pp.
387
395
.
11.
DeLancey
,
J.
,
1992
, “
Anatomic Aspects of Vaginal Eversion After Hysterectomy
,”
Am. J. Obstet. Gynecol.
,
166
(
6 Pt. 1
), pp.
1717
1724
.
12.
Becker
,
W. R.
, and
De Vita
,
R.
,
2015
, “
Biaxial Mechanical Properties of Swine Uterosacral and Cardinal Ligaments
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
549
560
.
13.
Goh
,
J. T.
,
2002
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
13
(
2
), pp.
76
79
.
14.
Cosson
,
M.
,
Lambaudie
,
E.
,
Boukerrou
,
M.
,
Lobry
,
P.
,
Crépin
,
G.
, and
Ego
,
A.
,
2004
, “
A Biomechanical Study of the Strength of Vaginal Tissues. Results on 16 Post-Menopausal Patients Presenting With Genital Prolapse
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
112
(
2
), pp.
201
205
.
15.
Lei
,
L.
,
Song
,
Y.
, and
Chen
,
R.
,
2007
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
18
(
6
), pp.
603
607
.
16.
Rahn
,
D. D.
,
Ruff
,
M. D.
,
Brown
,
S. A.
,
Tibbals
,
H. F.
, and
Word
,
R. A.
,
2008
, “
Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
198
(
5
), pp.
590.e1
590.e6
.
17.
Lowder
,
J. L.
,
Debes
,
K. M.
,
Moon
,
D. K.
,
Howden
,
N.
,
Abramowitch
,
S. D.
, and
Moalli
,
P. A.
,
2007
, “
Biomechanical Adaptations of the Rat Vagina and Supportive Tissues in Pregnancy to Accommodate Delivery
,”
Obstet. Gynecol.
,
109
(
1
), pp.
136
143
.
18.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Jorge
,
R. M.
,
Ferreira
,
A.
, and
Doblaré
,
M.
,
2010
, “
Experimental Study and Constitutive Modeling of the Viscoelastic Mechanical Properties of the Human Prolapsed Vaginal Tissue
,”
Biomech. Model. Mechanobiol.
,
9
(
1
), pp.
35
44
.
19.
Peña
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R. M.
,
Ferreira
,
A.
,
Doblaré
,
M.
, and
Calvo
,
B.
,
2011
, “
Mechanical Characterization of the Softening Behavior of Human Vaginal Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
275
283
.
20.
Martins
,
P. A.
,
Jorge
,
R. M.
,
Ferreia
,
A. J.
,
Saleme
,
C. S.
,
Roza
,
T.
,
Parente
,
M. M.
,
Pinotti
,
M.
,
Mascarenhas
,
T.
,
Santos
,
A.
,
Santos
,
L.
, and
Silva-Filho
,
A. L.
,
2011
, “
Vaginal Tissue Properties Versus Increased Intra-Abdominal Pressure: A Preliminary Biomechanical Study
,”
Gynecol. Obstet. Invest.
,
71
(
3
), pp.
145
150
.
21.
Martins
,
P.
,
Peña
,
E.
,
Calvo
,
B.
,
Doblaré
,
M.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R.
, and
Ferreira
,
A.
,
2010
, “
Prediction of Nonlinear Elastic Behaviour of Vaginal Tissue: Experimental Results and Model Formulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
327
337
.
22.
Abramowitch
,
S. D.
,
Feola
,
A.
,
Jallah
,
Z.
, and
Moalli
,
P. A.
,
2009
, “
Tissue Mechanics, Animal Models, and Pelvic Organ Prolapse: A Review
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
144
(
Suppl. 1
), pp.
S146
S158
.
23.
Timmons
,
B. C.
,
Fairhurst
,
A. M.
, and
Mahendroo
,
M. S.
,
2009
, “
Temporal Changes in Myeloid Cells in the Cervix During Pregnancy and Parturition
,”
J. Immunol.
,
182
(5), pp. 2700–2707.
24.
Yellon
,
S. M.
,
Ebner
,
C. A.
, and
Elovitz
,
M. A.
,
2009
, “
Medroxyprogesterone Acetate Modulates Remodeling, Immune Cell Census, and Nerve Fibers in the Cervix of a Mouse Model for Inflammation-Induced Preterm Birth
,”
Reprod. Sci.
,
16
(3), pp. 257–264.
25.
Baah-Dwomoh
,
A.
,
McGuire
,
J.
,
Tan
,
T.
, and
De Vita
,
R.
,
2016
, “
Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060801
.
26.
Tan
,
T.
,
Cholewa
,
N. M.
,
Case
,
S. W.
, and
De Vita
,
R.
,
2016
, “
Micro-Structural and Biaxial Creep Properties of the Swine Uterosacral–Cardinal Ligament Complex
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3225
3237
.
27.
Amin
,
M.
,
Le
,
V. P.
, and
Wagenseil
,
J. E.
,
2012
, “
Mechanical Testing of Mouse Carotid Arteries: From Newborn to Adult
,”
J. Visualized Exp.
,
60
, p. e3733.
28.
Ferruzzi
,
J.
,
Bersi
,
M.
, and
Humphrey
,
J.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.
29.
Moalli
,
P. A.
,
Howden
,
N. S.
,
Lowder
,
J. L.
,
Navarro
,
J.
,
Debes
,
K. M.
,
Abramowitch
,
S. D.
, and
Woo
,
S. L.
,
2005
, “
A Rat Model to Study the Structural Properties of the Vagina and Its Supportive Tissues
,”
Am. J. Obstet. Gynecol.
,
192
(
1
), pp.
80
88
.
30.
Balgobin
,
S.
,
Montoya
,
T. I.
,
Shi
,
H.
,
Acevedo
,
J. F.
,
Keller
,
P. W.
,
Riegel
,
M.
,
Wai
,
C. Y.
, and
Word
,
R. A.
,
2013
, “
Estrogen Alters Remodeling of the Vaginal Wall After Surgical Injury in Guinea Pigs
,”
Biol. Reprod.
,
89
(
6
), p.
138
.
31.
Drewes
,
P. G.
,
Yanagisawa
,
H.
,
Starcher
,
B.
,
Hornstra
,
I.
,
Csiszar
,
K.
,
Marinis
,
S. I.
,
Keller
,
P.
, and
Word
,
R. A.
,
2007
, “
Pelvic Organ Prolapse in Fibulin-5 Knockout Mice: Pregnancy-Induced Changes in Elastic Fiber Homeostasis in Mouse Vagina
,”
Am. J. Pathol.
,
170
(
2
), pp.
578
589
.
32.
Rahn
,
D.
,
Acevedo
,
J.
,
Roshanravan
,
S.
,
Keller
,
P.
,
Davis
,
E.
,
Marmorstein
,
L.
, and
Word
,
R.
,
2009
, “
Failure of Pelvic Organ Support in Mice Deficient in Fibulin-3
,”
Am. J. Pathol.
,
174
(
1
), pp.
206
215
.
33.
Word
,
R. A.
,
Pathi
,
S.
, and
Schaffer
,
J. I.
,
2009
, “
Pathophysiology of Pelvic Organ Prolapse
,”
Obstet. Gynecol. Clin. North Am.
,
36
(
3
), pp.
521
539
.
34.
Tan
,
T.
,
Davis
,
F. M.
,
Gruber
,
D. D.
,
Massengill
,
J. C.
,
Robertson
,
J. L.
, and
De Vita
,
R.
,
2015
, “
Histo-Mechanical Properties of the Swine Cardinal and Uterosacral Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
42
, pp. 129–137.
35.
Budatha
,
M.
,
Roshanravan
,
S.
,
Zheng
,
Q.
,
Weislander
,
C.
,
Chapman
,
S. L.
,
Davis
,
E. C.
,
Starcher
,
B.
,
Word
,
R. A.
, and
Yanagisawa
,
H.
,
2011
, “
Extracellular Matrix Proteases Contribute to Progression of Pelvic Organ Prolapse in Mice and Humans
,”
J. Clin. Invest.
,
121
(
5
), pp.
2048
2059
.
36.
Budatha
,
M.
,
Silva
,
S.
,
Montoya
,
T. I.
,
Suzuki
,
A.
,
Shah-Simpson
,
S.
,
Wieslander
,
C. K.
,
Yanagisawa
,
M.
,
Word
,
R. A.
, and
Yanagisawa
,
H.
,
2013
, “
Dysregulation of Protease and Protease Inhibitors in a Mouse Model of Human Pelvic Organ Prolapse
,”
PLoS One
,
8
(
2
), p.
e56376
.
37.
Couri
,
B.
,
Borazjani
,
A.
,
Lenis
,
A.
,
Balog
,
B.
,
Kuang
,
M.
,
Lin
,
D.
, and
Damaser
,
M.
,
2014
, “
Validation of Genetically Matched Wild-Type Strain and Lysyl Oxidase-Like 1 Knockout Mouse Model of Pelvic Organ Prolapse
,”
Female Pelvic Med. Reconstr. Surg.
,
20
(
5
), pp.
287
292
.
38.
Rahn
,
D. D.
,
Acevedo
,
J. F.
, and
Word
,
R. A.
,
2008
, “
Effect of Vaginal Distention on Elastic Fiber Synthesis and Matrix Degradation in the Vaginal Wall: Potential Role in the Pathogenesis of Pelvic Organ Prolapse
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
295
(
4
), pp.
R1351
R1358
.
39.
Wieslander
,
C. K.
,
Rahn
,
D. D.
,
McIntire
,
D. D.
,
Acevedo
,
J. F.
,
Drewes
,
P. G.
,
Yanagisawa
,
H.
, and
Word
,
R. A.
,
2009
, “
Quantification of Pelvic Organ Prolapse in Mice: Vaginal Protease Activity Precedes Increased MOPQ Scores in Fibulin 5 Knockout Mice
,”
Biol. Reprod.
,
80
(
3
), pp.
407
414
.
40.
Couri
,
B. M.
,
Lenis
,
A. T.
,
Borazjani
,
A.
,
Paraiso
,
M. F.
, and
Damaser
,
M. S.
,
2012
, “
Animal Models of Female Pelvic Organ Prolapse: Lessons Learned
,”
Expert Rev. Obstet. Gynecol.
,
7
(
3
), pp.
249
260
.
41.
Couri
,
B.
,
Lenis
,
A.
,
Kinley
,
B.
,
Balog
,
B.
,
Kuang
,
M.
, and
Damaser
,
M.
,
2012
, “
Injury Related Stem Cell Homing Cytokines in Lysyl Oxidase Like-1 Knockout Mice: A Pelvic Organ Prolapse Model
,”
J. Urol.
,
187
(
4
), p.
E863
.
42.
Couri
,
B.
,
Venkataraman
,
L.
,
Bashur
,
C.
,
Lenis
,
A.
,
Wilk
,
D.
,
Ramamurthi
,
A.
, and
Damaser
,
M.
,
2013
, “
Pathophysiologic Changes in Loxl-1 Knockout Mouse With Pelvic Floor Dysfunction Induce a Compensatory and Aberrant Elastin Regenerative Response by Vaginal Smooth Muscle Cells
,”
J. Urol.
,
189
(
4
), p.
E50
.
43.
Couri
,
B.
,
Wilson-Harris
,
B.
,
Pizarro-Berdichevsky
,
J.
,
Borazjani
,
A.
,
Gonzalez-Ramos
,
S.
,
Dijkema
,
G.
,
Kuang
,
M.
,
Balog
,
B.
, and
Damaser
,
M.
,
2015
, “
Reduction in Pelvic Organ Prolapse in Lysyl Oxidase Like-1 (LOXL1) Knockout (KO) Mice Using a Cell Based Therapy
,”
J. Urol.
,
193
(
4
), pp.
E76
E77
.
44.
Gustilo-Ashby
,
A. M.
,
Lee
,
U.
,
Vurbic
,
D.
,
Sypert
,
D.
,
Kuang
,
M.
,
Daneshgari
,
F.
,
Barber
,
M. D.
, and
Damaser
,
M. S.
,
2010
, “
The Impact of Cesarean Delivery on Pelvic Floor Dysfunction in Lysyl Oxidase Like-1 Knockout Mice
,”
Female Pelvic Med. Reconstr. Surg.
,
16
(
1
), pp.
21
30
.
45.
Lee
,
U.
,
Gustilo-Ashby
,
A.
,
Daneshgari
,
F.
,
Kuang
,
M.
,
Vrubic
,
D.
,
Lin
,
D.
,
Flask
,
C.
,
Li
,
T.
, and
Damaser
,
M.
,
2008
, “
Functional and Anatomical Phenotype in Lysyl Oxidase Like-1 Knockout Mice Resembles the Natural History of Pelvic Organ Prolapse in Humans
,”
J. Urol.
,
179
(
4
), pp.
444
445
.
46.
Lee
,
U. J.
,
Gustilo-Ashby
,
A. M.
,
Daneshgari
,
F.
,
Kuang
,
M.
,
Vurbic
,
D.
,
Lin
,
D. L.
,
Flask
,
C. A.
,
Li
,
T.
, and
Damaser
,
M. S.
, 2008, “
Lower Urogenital Tract Anatomical and Functional Phenotype in Lysyl Oxidase Like-1 Knockout Mice Resembles Female Pelvic Floor Dysfunction in Humans
,”
Am. J. Physiol.-Renal Physiol.
,
295
(2), pp. F545–F555.
47.
Montoya
,
T. I.
,
Maldonado
,
P. A.
,
Acevedo
,
J. F.
, and
Word
,
R. A.
,
2015
, “
Effect of Vaginal or Systemic Estrogen on Dynamics of Collagen Assembly in the Rat Vaginal Wall
,”
Biol. Reprod.
,
92
(
2
), p.
43
.
48.
Ripperda
,
C. M.
,
Maldonado
,
P. A.
,
Acevedo
,
J. F.
,
Keller
,
P. W.
,
Akgul
,
Y.
,
Shelton
,
J. M.
, and
Word
,
R. A.
,
2017
, “
Vaginal Estrogen: A Dual-Edged Sword in Postoperative Healing of the Vaginal Wall
,”
Menopause
,
24
(
7
), pp.
838
849
.
49.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2007
, “
Biomechanical Properties of Vaginal Tissue—Part 1: New Experimental Protocol
,”
J. Urol.
,
178
(
1
), pp.
320
325
.
50.
Humphrey
,
J. D.
,
2013
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer Science & Business Media
,
New York
.
51.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
52.
Van Loon
,
P.
,
1976
, “
Length-Force and Volume-Pressure Relationships of Arteries
,”
Biorheology
,
14
(
4
), pp.
181
201
.https://www.ncbi.nlm.nih.gov/pubmed/912047
53.
Sokolis
,
D. P.
,
Petsepe
,
D. C.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Age- and Region-Related Changes in the Biomechanical Properties and Composition of the Human Ureter
,”
J. Biomech.
,
51
, pp.
57
64
.
54.
Caulk
,
A. W.
,
Nepiyushchikh
,
Z. V.
,
Shaw
,
R.
,
Dixon
,
J. B.
, and
Gleason
,
R. L.
,
2015
, “
Quantification of the Passive and Active Biaxial Mechanical Behaviour and Microstructural Organization of Rat Thoracic Ducts
,”
J. R. Soc. Interface
,
12
(
108
), p.
20150280
.
55.
von Maltzahn
,
W. W.
,
Warriyar
,
R. G.
, and
Keitzer
,
W. F.
,
1984
, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
,
17
(
11
), pp.
839
847
.
56.
Rubod
,
C.
,
Brieu
,
M.
,
Cosson
,
M.
,
Rivaux
,
G.
,
Clay
,
J.
,
de Landsheere
,
L.
, and
Gabriel
,
B.
,
2012
, “
Biomechanical Properties of Human Pelvic Organs
,”
Urology
,
79
(
4
), pp.
968.e17
968.e22
.
57.
Collins
,
M.
,
Eberth
,
J.
,
Wilson
,
E.
, and
Humphrey
,
J.
,
2012
, “
Acute Mechanical Effects of Elastase on the Infrarenal Mouse Aorta: Implications for Models of Aneurysms
,”
J. Biomech.
,
45
(
4
), pp.
660
665
.
58.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.
59.
Fonck
,
E.
,
Prod'hom
,
G.
,
Roy
,
S.
,
Augsburger
,
L.
,
Rüfenacht
,
D. A.
, and
Stergiopulos
,
N.
,
2007
, “
Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
292
(
6
), pp.
H2754
H2763
.
60.
Cardamone
,
L.
,
Valentin
,
A.
,
Eberth
,
J.
, and
Humphrey
,
J.
,
2009
, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model. Mechanobiol.
,
8
(
6
), pp.
431
446
.
61.
Kerkhof
,
M. H.
,
Hendriks
,
L.
, and
Brölmann
,
H. A.
,
2009
, “
Changes in Connective Tissue in Patients With Pelvic Organ Prolapse—A Review of the Current Literature
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
20
(
4
), pp.
461
474
.
62.
House
,
M.
,
Sanchez
,
C. C.
,
Rice
,
W. L.
,
Socrate
,
S.
, and
Kaplan
,
D. L.
,
2010
, “
Cervical Tissue Engineering Using Silk Scaffolds and Human Cervical Cells
,”
Tissue Eng. Part A
,
16
(6), pp. 2101–2112.
63.
Downing
,
K. T.
,
Billah
,
M.
,
Raparia
,
E.
,
Shah
,
A.
,
Silverstein
,
M. C.
,
Ahmad
,
A.
, and
Boutis
,
G. S.
,
2014
, “
The Role of Mode of Delivery on Elastic Fiber Architecture and Vaginal Vault Elasticity: A Rodent Model Study
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
190
198
.
64.
Becher
,
N.
,
Hein
,
M.
,
Danielsen
,
C. C.
, and
Uldbjerg
,
N.
, 2010, “
Matrix Metalloproteinases in the Cervical Mucus Plug in Relation to Gestational Age, Plug Compartment, and Preterm Labor
,”
Reprod. Biol. Endocrinol.
,
8
, p. 113.
65.
Timmons
,
B.
,
Akins
,
M.
, and
Mahendroo
,
M.
,
2010
, “
Cervical Remodeling During Pregnancy and Parturition
,”
Trends Endocrinol. Metab.
,
21
(6), pp. 353–361.
66.
Akins
,
M. L.
,
Luby-Phelps
,
K.
, and
Mahendroo
,
M.
,
2010
, “
Second Harmonic Generation Imaging as a Potential Tool for Staging Pregnancy and Predicting Preterm Birth
,”
J. Biomed. Opt.
,
15
(2), p. 026020.
67.
Kerkhof
,
M. H.
,
Ruiz-Zapata
,
A. M.
,
Bril
,
H.
,
Bleeker
,
M. C.
,
Belien
,
J. A.
,
Stoop
,
R.
, and
Helder
,
M. N.
,
2014
, “
Changes in Tissue Composition of the Vaginal Wall of Premenopausal Women With Prolapse
,”
Am. J. Obstet. Gynecol.
,
210
(
2
), pp.
168.e1
168.e9
.
68.
van der Walt
,
I.
,
,
K.
,
Hanekom
,
S.
, and
Rienhardt
,
G.
,
2014
, “
Ethnic Differences in Pelvic Floor Muscle Strength and Endurance in South African Women
,”
Int. Urogynecol. J.
,
25
(
6
), pp.
799
805
.
69.
Ferruzzi
,
J.
,
Bersi
,
M.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J.
,
2015
, “
Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031007
.
70.
Fung
,
Y.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
237
(
5
), pp.
H620
H631
.https://www.ncbi.nlm.nih.gov/pubmed/495769
71.
Feola
,
A.
,
Moalli
,
P.
,
Alperin
,
M.
,
Duerr
,
R.
,
Gandley
,
R. E.
, and
Abramowitch
,
S.
,
2011
, “
Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
549
558
.
72.
Skoczylas
,
L. C.
,
Jallah
,
Z.
,
Sugino
,
Y.
,
Stein
,
S. E.
,
Feola
,
A.
,
Yoshimura
,
N.
, and
Moalli
,
P.
,
2013
, “
Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology
,”
Reprod. Sci.
,
20
(
4
), pp.
382
390
.
73.
Barone
,
W. R.
,
Allah
,
Z.
,
Mollie
,
P. M.
, and
Abramowitch
,
S. D.
,
2015
, “
Effect of Active Smooth Muscle Contraction on the Planar Biaxial Mechanical Properties of the Rat Vagina
,”
Midwest American Society of Biomechanics Regional Meeting
, Akron, OH, Feb. 16–17.
74.
Murtada
,
S.-I.
,
Ferruzzi
,
J.
,
Yanagisawa
,
H.
, and
Humphrey
,
J.
,
2016
, “
Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051008
.
75.
House
,
M.
,
Kaplan
,
D. L.
, and
Socrate
,
S.
,
2009
, “
Relationships Between Mechanical Properties and Extracellular Matrix Constituents of the Cervical Stroma During Pregnancy
,”
Semin. Perinatol.
,
33
(5), pp. 300–307.
You do not currently have access to this content.