In this study, the fatigue characteristics of femoral and tibial locking compression plate (LCP) implants are determined accounting for the knee biomechanics during the gait. A biomechanical model for the kinematics and kinetics of the knee joint during the complete gait cycle is proposed. The rotations of the femur, tibia, and patella about the knee joint during the gait are determined. Moreover, the patellar-tendon force (PT), quadriceps-tendon force (QT), the tibiofemoral joint force (TFJ), and the patellofemoral joint force (PFJ) through the standard gait cycle are obtained as functions of the body weight (BW). On the basis of the derived biomechanics of the knee joint, the fatigue factors of safety along with the fatigue life of 316L stainless steel femoral and tibial LCP implants are reported as functions of the BW and bone fracture location, for the first time. The reported results reveal that 316L stainless steel LCP implants for femoral surgeries are preferred for conditions in which the bone fracture is close to the knee joint and the BW is less than 80 kg. For tibial surgeries, 316L stainless steel LCP implants can be used for conditions in which the bone fracture is close to the knee joint and the BW is less than 100 kg. This study presents a critical guide for the determination of the fatigue characteristics of LCP implants. The obtained results reveal that the fatigue analyses should be performed on the basis of the body biomechanics to guarantee accurate designs of LCP implants for femoral and tibial orthopedic surgeries.

References

References
1.
Tsai
,
S.
,
Fitzpatrick
,
D. C.
,
Madey
,
S. M.
, and
Bottlang
,
M.
,
2015
, “
Dynamic Locking Plates Provide Symmetric Axial Dynamization to Stimulate Fracture Healing
,”
J. Orthop. Res.
,
33
(
8
), pp.
1218
1225
.
2.
Lenz
,
M.
,
Stoffel
,
K.
,
Gueorguiev
,
B.
,
Klos
,
K.
,
Kielstein
,
H.
, and
Hofmann
,
G. O.
,
2016
, “
Enhancing Fixation Strength in Periprosthetic Femur Fractures by Orthogonal Plating—A Biomechanical Study
,”
J. Orthop. Res.
,
34
(
4
), pp.
591
596
.
3.
Frigg
,
R.
,
2003
, “
Development of the Locking Compression Plate
,”
Injury
,
34
(
Suppl. 2
), pp.
6
10
.
4.
Aslam
,
N.
,
Hazarika
,
S.
,
Nagarajah
,
K.
, and
McNab
,
I.
,
2005
, “
AO 2 mm Locking Compression Plate for Arthrodesis of the Proximal Interphalangeal Joint
,”
Injury Extra
,
36
(
10
), pp.
428
431
.
5.
Stoffel
,
K.
,
Cunneen
,
S.
,
Morgan
,
R.
,
Nicholls
,
R.
, and
Stachowiak
,
G.
,
2008
, “
Comparative Stability of Perpendicular Versus Parallel Double-Locking Plating Systems in Osteoporotic Comminuted Distal Humerus Fractures
,”
J. Orthop. Res.
,
26
(
6
), pp.
778
784
.
6.
Kanchanomai
,
C.
,
Phiphobmongkol
,
V.
, and
Muanjan
,
P.
,
2008
, “
Fatigue Failure of an Orthopedic Implant—A Locking Compression Plate
,”
Eng. Failure Anal.
,
15
(
5
), pp.
521
530
.
7.
Nassiri
,
M.
,
MacDonald
,
B.
, and
O'Byrne
,
J. M.
,
2012
, “
Locking Compression Plate Breakage and Fracture Non-Union: A Unite Element Study of Three Patient-Specific Cases
,”
Eur. J. Orthop. Surg. Traumatol.
,
22
(
4
), pp.
275
281
.
8.
van Meeteren
,
M. C.
,
van Rief
,
Y. E.
,
Roukema
,
J. A.
, and
van Der Werken
,
C.
,
1996
, “
Condylar Plate Fixation of Subtrochanteric Femoral Fractures
,”
Injury
,
27
(
10
), pp.
715
717
.
9.
Sivakumar
,
M.
,
Mudali
,
U. K.
, and
Rajeswari
,
S.
,
1994
, “
Investigation of Failures in Stainless Steel Orthopaedic Implant Devices Fatigue Failure Due to Improper Fixation of a Compression Bone Plate
,”
J. Mater. Sci. Lett.
,
13
(
2
), pp.
142
145
.
10.
Leinenbach
,
C.
,
Fleck
,
C.
, and
Eifler
,
D.
,
2004
, “
The Cyclic Deformation Behaviour and Fatigue Induced Damage of the Implant Alloy TiAl6Nb7 in Simulated Physiological Media
,”
Int. J. Fatigue
,
26
(
8
), pp.
857
864
.
11.
Schüller
,
M.
,
Drobetz
,
H.
,
Redl
,
H.
, and
Tschegg
,
E. K.
,
2009
, “
Analysis of the Fatigue Behaviour Characterized by Stiffness and Permanent Deformation for Different Distal Volar Radius Compression Plates
,”
Mater. Sci. Eng., C
,
29
(
8
), pp.
2471
2477
.
12.
Fleck
,
C.
, and
Eifler
,
D.
,
2010
, “
Corrosion, Fatigue and Corrosion Fatigue Behaviour of Metal Implant materials, Especially Titanium Alloys
,”
Int. J. Fatigue
,
32
(
6
), pp.
929
935
.
13.
Sealy
,
M. P.
,
Guo
,
Y. B.
,
Caslaru
,
R. C.
,
Sharkins
,
J.
, and
Feldman
,
D.
,
2016
, “
Fatigue Performance of Biodegradable Magnesium–Calcium Alloy Processed by Laser Shock Peening for Orthopedic Implants
,”
Int. J. Fatigue
,
82
(
Pt. 3
), pp.
428
436
.
14.
Gervais
,
B.
,
Vadeana
,
A.
,
Raisona
,
M.
, and
Brochua
,
M.
,
2016
, “
Failure Analysis of a 316L Stainless Steel Femoral Orthopedic Implant
,”
Case Stud. Eng. Failure Anal.
,
5–6
, pp.
30
38
.
15.
Okazaki
,
Y.
,
Ishii
,
D.
, and
Ogawa
,
A.
,
2017
, “
Spatial Stress Distribution Analysis by Thermoelastic Stress Measurement and Evaluation of Effect of Stress Concentration on Durability of Various Orthopedic Implant Devices
,”
Mater. Sci. Eng., C
,
75
, pp.
34
42
.
16.
Chao
,
P.
,
Conrad
,
B. P.
,
Lewis
,
D. D.
,
Horodyski
,
M.
, and
Pozzi
,
A.
,
2013
, “
Effect of Plate Working Length on Plate Stiffness and Cyclic Fatigue Life in a Cadaveric Femoral Fracture Gap Model Stabilized With a 12-Hole 2.4 mm Locking Compression Plate
,”
BMC Vet. Res.
,
9
(
1
), p.
125
.
17.
Miller
,
D.
, and
Goswami
,
T.
,
2007
, “
A Review of Locking Compression Plate Biomechanics and Their Advantages as Internal Fixators in Fracture Healing
,”
Clin. Biochem.
,
22
(
10
), pp.
1049
1062
.
18.
Sommer
,
C.
,
Gautier
,
E.
,
Müller
,
M.
,
Helfet
,
D. L.
, and
Wagner
,
M.
,
2003
, “
First Clinical Results of the Locking Compression Plate (LCP)
,”
Injury
,
34
(
Suppl. 2
), pp.
43
54
.
19.
Oh
,
J.-K.
,
Sahu
,
D.
,
Ahn
,
Y.-H.
,
Lee
,
S.-J.
,
Tsutsumi
,
S.
,
Hwang
,
J.-H.
,
Jung
,
D.-Y.
,
Perren
,
S. M.
, and
Oh
,
C.-W.
,
2010
, “
Effect of Fracture Gap on Stability of Compression Plate Fixation: A Finite Element Study
,”
J. Orthop. Res.
,
28
(
4
), pp.
462
467
.
20.
DeLisa
,
J. A.
,
1998
,
Gait Analysis in the Science of Rehabilitation
,
Department of Veterans Affairs, Veterans Health Administration
,
Washington, DC
.
21.
Ivanenko
,
Y. P.
,
Poppele
,
R. E.
, and
Lacquaniti
,
F.
,
2004
, “
Five Basic Muscle Activation Patterns Account for Muscle Activity During Human Locomotion
,”
J. Physiol.
,
556
(Pt.
1
), pp.
267
282
.
22.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
23.
Renner
,
S.
,
2007
, “
Determination of Muscle Forces Acting on the Femur and Stress Analysis
,” Master thesis, Technische Universität München, Munich, Germany.
24.
Messier
,
S. P.
,
Legault
,
C.
,
Loeser
,
R. F.
,
Van Arsdale
,
S. J.
,
Davis
,
C.
,
Ettinger
,
W. H.
, and
DeVita
,
P.
,
2011
, “
Does High Weight Loss in Older Adults With Knee Osteoarthritis Affect Bone-On-Bone Joint Loads and Muscle Forces During Walking?
,”
Osteoarthritis Cartilage
,
19
(
3
), pp.
272
280
.
25.
NithinKumar
,
K. C.
,
Tandon
,
T.
,
Silori
,
P.
, and
Shaikh
,
A.
,
2015
, “
Biomechanical Stress Analysis of a Human Femur Bone Using ANSYS
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
2115
2120
.
26.
Cleather
,
D. J.
,
Southgate
,
D. F. L.
, and
Bull
,
A. M. J.
,
2014
, “
On the Role of the Patella, ACL and Joint Contact Forces in the Extension of the Knee
,”
PLoS One
,
9
(
12
), p.
e115670
.
27.
Bersini
,
S.
,
Sansone
,
V.
, and
Frigo
,
C. A.
,
2016
, “
A Dynamic Multibody Model of the Physiological Knee to Predict Internal Loads During Movement in Gravitational Field
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
5
), pp.
571
579
.
28.
Huang
,
J. Y.
,
Yeh
,
J. J.
,
Jeng
,
S. L.
,
Chen
,
C. Y.
, and
Kuo
,
R. C.
,
2006
, “
High-Cycle Fatigue Behavior of Type 316L Stainless Steel
,”
Mater. Trans.
,
47
(
2
), pp.
409
417
.
29.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley's Mechanical Engineering Design
,
9th ed.
,
McGraw-Hill
,
New York
.
30.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
,
2009
, “
Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
361
374
.
31.
Leszko
,
F.
,
Sharma
,
A.
,
Komistek
,
R. D.
,
Mahfouz
,
M. R.
,
Cates
,
H. E.
, and
Scuderi
,
G. R.
,
2010
, “
Comparison of In Vivo Patellofemoral Kinematics for Subjects Having High-Flexion Total Knee Arthroplasty Implant With Patients Having Normal Knees
,”
J. Arthroplasty
,
25
(
3
), pp.
398
404
.
32.
Herzog
,
W.
, and
Read
,
L. J.
,
1993
, “
Lines of Action and Moment Arms of the Major Force-Carrying Structures Crossing the Human Knee Joint
,”
J. Anat.
,
182
(
Pt. 2
), pp.
213
230
.
33.
Barela
,
A. M. F.
,
de Freitas
,
P. B.
,
Celestino
,
M. L.
,
Camargo
,
M. R.
, and
Barela
,
J. A.
,
2014
, “
Ground Reaction Forces During Level Ground Walking With Body Weight Unloading
,”
Braz. J. Phys. Ther.
,
18
(
6
), pp.
572
579
.
34.
Shigley
,
J. E.
,
Mischke
,
C. R.
, and
Brown
,
T. H.
,
2004
,
Standard Handbook of Machine Design
,
3rd ed.
,
McGraw-Hill
,
New York
.
35.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2005
, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1948
1956
.
36.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.
You do not currently have access to this content.