Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell–cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation—the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

References

References
1.
Heisenberg
,
C. P.
, and
Bellaïche
,
Y.
,
2013
, “
Forces in Tissue Morphogenesis and Patterning
,”
Cell
,
153
(
5
), pp.
948
962
.
2.
Lecuit
,
T.
,
Lenne
,
P.-F.
, and
Munro
,
E.
,
2011
, “
Force Generation, Transmission, and Integration During Cell and Tissue Morphogenesis
,”
Annu. Rev. Cell Dev. Biol.
,
27
(
1
), pp.
157
184
.
3.
Martin
,
A. C.
,
Gelbart
,
M.
,
Fernandez-Gonzalez
,
R.
,
Kaschube
,
M.
, and
Wieschaus
,
E. F.
,
2010
, “
Integration of Contractile Forces During Tissue Invagination
,”
J. Cell Biol.
,
188
(
5
), pp.
735
749
.
4.
Meng
,
W.
, and
Takeichi
,
M.
,
2009
, “
Adherens Junction: Molecular Architecture and Regulation
,”
Cold Spring Harbor Perspect. Biol.
,
1
(6), p.
a002899
.
5.
Bambardekar
,
K.
,
Clement
,
R.
,
Blanc
,
O.
,
Chardes
,
C.
, and
Lenne
,
P. F.
,
2015
, “
Direct Laser Manipulation Reveals the Mechanics of Cell Contacts In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
5
), pp.
1416
1421
.
6.
Campas
,
O.
,
Mammoto
,
T.
,
Hasso
,
S.
,
Sperling
,
R. A.
,
O'Connell
,
D.
,
Bischof
,
A. G.
,
Maas
,
R.
,
Weitz
,
D. A.
,
Mahadevan
,
L.
, and
Ingber
,
D. E.
,
2014
, “
Quantifying Cell-Generated Mechanical Forces Within Living Embryonic Tissues
,”
Nat. Methods
,
11
, pp.
183
189
.
7.
Borghi
,
N.
,
Sorokina
,
M.
,
Shcherbakova
,
O. G.
,
Weis
,
W. I.
,
Pruitt
,
B. L.
,
Nelson
,
W. J.
, and
Dunn
,
A. R.
,
2012
, “
E-cadherin Is Under Constitutive Actomyosin-Generated Tension That Is Increased at Cell-Cell Contacts Upon Externally Applied Stretch
,”
Proc. Natl. Acad. Sci.
,
109
(31), pp.
12568
12573
.
8.
Liu
,
Z.
,
Tan
,
J. L.
,
Cohen
,
D. M.
,
Yang
,
M. T.
,
Sniadecki
,
N. J.
,
Ruiz
,
S. A.
,
Nelson
,
C. M.
, and
Chen
,
C. S.
,
2010
, “
Mechanical Tugging Force Regulates the Size of Cell-Cell Junctions
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
22
), pp.
9944
9949
.
9.
Maruthamuthu
,
V.
,
Sabass
,
B.
,
Schwarz
,
U. S.
, and
Gardel
,
M. L.
,
2011
, “
Cell-ECM Traction Force Modulates Endogenous Tension at Cell-Cell Contacts
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
12
), pp.
4708
4713
.
10.
Muhamed
,
I.
,
Chowdhury
,
F.
, and
Maruthamuthu
,
V.
,
2017
, “
Biophysical Tools to Study Cellular Mechanotransduction
,”
Bioengineering
,
4
(
1
), p.
12
.
11.
Ng
,
M. R.
,
Besser
,
A.
,
Brugge
,
J. S.
, and
Danuser
,
G.
,
2014
, “
Mapping the Dynamics of Force Transduction at Cell-Cell Junctions of Epithelial Clusters
,”
eLife
,
3
, p.
e03282
.
12.
Tambe
,
D. T.
,
Hardin
,
C. C.
,
Angelini
,
T. E.
,
Rajendran
,
K.
,
Park
,
C. Y.
,
Serra-Picamal
,
X.
,
Zhou
,
E. H.
,
Zaman
,
M. H.
,
Butler
,
J. P.
,
Weitz
,
D. A.
,
Fredberg
,
J. J.
, and
Trepat
,
X.
,
2011
, “
Collective Cell Guidance by Cooperative Intercellular Forces
,”
Nat. Mater.
,
10
(
6
), pp.
469
475
.
13.
Tang
,
X.
,
Tofangchi
,
A.
,
Anand
,
S. V.
, and
Saif
,
T. A.
,
2014
, “
A Novel Cell Traction Force Microscopy to Study Multi-Cellular System
,”
PLoS Comput. Biol.
,
10
(
6
), p.
e1003631
.
14.
Maruthamuthu
,
V.
, and
Gardel
,
M. L.
,
2014
, “
Protrusive Activity Guides Changes in Cell-Cell Tension During Epithelial Cell Scattering
,”
Biophys. J.
,
107
(
3
), pp.
555
563
.
15.
Mertz
,
A. F.
,
Banerjee
,
S.
,
Che
,
Y.
,
German
,
G. K.
,
Xu
,
Y.
,
Hyland
,
C.
,
Marchetti
,
M. C.
,
Horsley
,
V.
, and
Dufresne
,
E. R.
,
2012
, “
Scaling of Traction Forces With the Size of Cohesive Cell Colonies
,”
Phys. Rev. Lett.
,
108
(
19
), p.
198101
.
16.
Wang
,
N.
,
Tolic-Norrelykke
,
I. M.
,
Chen
,
J.
,
Mijailovich
,
S. M.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
, and
Stamenovic
,
D.
,
2002
, “
Cell Prestress. I. Stiffness and Prestress Are Closely Associated in Adherent Contractile Cells
,”
Am. J. Physiol. Cell Physiol.
,
282
(
3
), pp.
C606
C616
.
17.
Vignaud
,
T.
,
Ennomani
,
H.
, and
Thery
,
M.
,
2014
, “
Polyacrylamide Hydrogel Micropatterning
,”
Methods Cell Biol.
,
120
, pp.
93
116
.
18.
Martiel
,
J. L.
,
Leal
,
A.
,
Kurzawa
,
L.
,
Balland
,
M.
,
Wang
,
I.
,
Vignaud
,
T.
,
Tseng
,
Q.
, and
Théry
,
M.
,
2015
, “
Measurement of Cell Traction Forces With ImageJ
,”
Methods Cell Biol.
,
125
, pp.
269
287
.
19.
Butler
,
J. P.
,
Tolic-Norrelykke
,
I. M.
,
Fabry
,
B.
, and
Fredberg
,
J.
,
2002
, “
Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings
,”
Am. J. Physiol. Cell Physiol.
,
282
(
3
), pp.
C595
C605
.
20.
Plotnikov
,
S. V.
,
Sabass
,
B.
,
Schwarz
,
U. S.
, and
Waterman
,
C. M.
,
2014
, “
High-Resolution Traction Force Microscopy
,”
Methods Cell Biol.
,
123
, pp.
367
394
.
21.
Sabass
,
B.
,
Gardel
,
M. L.
,
Waterman
,
C. M.
, and
Schwarz
,
U. S.
,
2008
, “
High Resolution Traction Force Microscopy Based on Experimental and Computational Advances
,”
Biophys. J.
,
94
(
1
), pp.
207
220
.
22.
Schwarz
,
U. S.
,
Balaban
,
N. Q.
,
Riveline
,
D.
,
Bershadsky
,
A.
,
Geiger
,
B.
, and
Safran
,
S. A.
,
2002
, “
Calculation of Forces at Focal Adhesions From Elastic Substrate Data: The Effect of Localized Force and the Need for Regularization
,”
Biophys. J.
,
83
(
3
), pp.
1380
1394
.
23.
Kimura
,
K.
,
Ito
,
M.
,
Amano
,
M.
,
Chihara
,
K.
,
Fukata
,
Y.
,
Nakafuku
,
M.
,
Yamamori
,
B.
,
Feng
,
J.
,
Nakano
,
T.
,
Okawa
,
K.
,
Iwamatsu
,
A.
, and
Kaibuchi
,
K.
,
1996
, “
Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase)
,”
Science
,
273
(
5272
), pp.
245
248
.
24.
Vincent
,
R.
,
Bazellieres
,
E.
,
Perez-Gonzalez
,
C.
,
Uroz
,
M.
,
Serra-Picamal
,
X.
, and
Trepat
,
X.
,
2015
, “
Active Tensile Modulus of an Epithelial Monolayer
,”
Phys. Rev. Lett.
,
115
(
24
), p.
248103
.
25.
Casares
,
L.
,
Vincent
,
R.
,
Zalvidea
,
D.
,
Campillo
,
N.
,
Navajas
,
D.
,
Arroyo
,
M.
, and
Trepat
,
X.
,
2015
, “
Hydraulic Fracture During Epithelial Stretching
,”
Nat. Mater.
,
14
(
3
), pp.
343
351
.
26.
Tambe
,
D. T.
,
Croutelle
,
U.
,
Trepat
,
X.
,
Park
,
C. Y.
,
Kim
,
J. H.
,
Millet
,
E.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2013
, “
Monolayer Stress Microscopy: Limitations, Artifacts, and Accuracy of Recovered Intercellular Stresses
,”
PLoS One
,
8
(
2
), p.
e55172
.
You do not currently have access to this content.