Soft connective tissues sustain large strains of viscoelastic nature. The rate-independent component is frequently modeled by means of anisotropic hyperelastic models. The rate-dependent component is usually modeled through linear rheological models or quasi-linear viscoelastic (QLV) models. These viscoelastic models are unable, in general, to capture the strain-level dependency of the viscoelastic properties present in many viscoelastic tissues. In linear viscoelastic models, strain-level dependency is frequently accounted for by including the dependence of multipliers of Prony series on strains through additional evolution laws, but the determination of the material parameters is a difficult task and the obtained accuracy is usually not sufficient. In this work, we introduce a model for fully nonlinear viscoelasticity in which the instantaneous and quasi-static behaviors are exactly captured and the relaxation curves are predicted to a high accuracy. The model is based on a fully nonlinear standard rheological model and does not necessitate optimization algorithms to obtain material parameters. Furthermore, in contrast to most models used in modeling the viscoelastic behavior of soft tissues, it is valid for the large deviations from thermodynamic equilibrium typically observed in soft tissues.

References

References
1.
Fung
,
Y. C.
,
2010
,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
New York
.
2.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues and Organs
,
Springer
,
New York
.
3.
Duenwald
,
S. E.
,
Vanderby
,
R.
, Jr.
, and
Lakes
,
R. S.
,
2009
, “
Constitutive Equations for Ligament and Other Soft Tissue: Evaluation by Experiment
,”
Acta Mech.
,
205
(
1–4
), pp.
23
33
.
4.
Van Loocke
,
M.
,
Lyons
,
C. G.
, and
Simms
,
C. K.
,
2006
, “
A Validated Model of Passive Muscle in Compression
,”
J. Biomech.
,
39
(
16
), pp.
2999
3009
.
5.
Van Loocke
,
M.
,
Lyons
,
C. G.
, and
Simms
,
C. K.
,
2008
, “
Viscoelastic Properties of Passive Skeletal Muscle in Compression: Stress-Relaxation Behaviour and Constitutive Modelling
,”
J. Biomech.
,
41
(
7
), pp.
1555
1566
.
6.
Van Loocke
,
M.
,
Simms
,
C. K.
, and
Lyons
,
C. G.
,
2008
, “
Viscoelastic Properties of Passive Skeletal Muscle in Compression—Cyclic Behaviour
,”
J. Biomech.
,
42
(
8
), pp.
1038
1048
.
7.
Simó
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
8.
Simó
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
,
Berlin
.
9.
Peña
,
E.
,
Peña
,
J. A.
, and
Doblaré
,
M.
,
2008
, “
On Modelling Nonlinear Viscoelastic Effects in Ligaments
,”
J. Biomech.
,
41
(
12
), pp.
2659
2666
.
10.
Calvo
,
B.
,
Sierra
,
M.
,
Grasa
,
J.
,
Muñoz
,
M. J.
, and
Peña
,
E.
,
2014
, “
Determination of Passive Viscoelastic Response of the Abdominal Muscle and Related Constitutive Modeling: Stress-Relaxation Behavior
,”
J. Mech. Behav. Biomed. Mater.
,
36
, pp.
47
58
.
11.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
,
2001
, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
34
), pp.
4379
4403
.
12.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
13.
Kaliske
,
M.
, and
Rothert
,
H.
,
1997
, “
Formulation and Implementation of Three-Dimensional Viscoelasticity at Small and Finite Strains
,”
Comput. Mech.
,
19
(
3
), pp.
228
239
.
14.
Gültekin
,
O.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2016
, “
An Orthotropic Viscoelastic Model for the Passive Myocardium: Continuum Basis and Numerical Treatment
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
15
), pp.
1647
1664
.
15.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solid Struct.
,
35
(
26–27
), pp.
3455
3482
.
16.
Haslach
,
H. W.
,
2011
,
Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure
,
Springer
,
New York
.
17.
Haupt
,
P.
,
1993
, “
Thermodynamics of Solids
,”
Non-Equilibrium Thermodynamics With Applications to Solids
W.
Muschik
, ed.,
Springer
,
Vienna, Austria
.
18.
Duenwald
,
S. E.
,
Vanderby
,
R.
, Jr.
, and
Lakes
,
R. S.
,
2010
, “
Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modelling
,”
Biorheology
,
47
(
1
), pp.
1
14
.
19.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr
.,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.
20.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2015
, “
Anisotropic Finite Strain Viscoelasticity Based on the Sidoroff Multiplicative Decomposition and Logarithmic Strains
,”
Comput. Mech.
,
56
(
3
), pp.
503
531
.
21.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2016
, “
Fully Anisotropic Finite Strain Viscoelasticity Based on a Reverse Multiplicative Decomposition and Logarithmic Strains
,”
Comput. Struct.
,
163
, pp.
56
70
.
22.
Aranda-Iglesias
,
D.
,
Vadillo
,
G.
,
Rodríguez-Martínez
,
J. A.
, and
Volokh
,
K. Y.
,
2017
, “
Modeling Deformation and Failure of Elastomers at High Strain Rates
,”
Mech. Mater.
,
104
, pp.
85
92
.
23.
Volokh
,
K. Y.
,
2016
,
Mechanics of Soft Materials
,
Springer
,
Singapore
.
24.
Hoo Fatt
,
M. S.
, and
Ouyang
,
X.
,
2008
, “
Three-Dimensional Constitutive Equations for Styrene Butadiene Rubber at High Strain Rates
,”
Mech. Mater.
,
40
(
1–2
), pp.
1
16
.
25.
Sussman
,
T.
, and
Bathe
,
K.-J.
,
2009
, “
A Model of Incompressible Isotropic Hyperelastic Material Behavior Using Spline Interpolations of Tension-Compression Test Data
,”
Numer. Methods Biomed. Eng.
,
25
(
1
), pp.
53
63
.
26.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2014
, “
What-You-Prescribe-Is-What-You-Get Orthotropic Hyperelasticity
,”
Comput. Mech.
,
53
(
6
), pp.
1279
1298
.
27.
Crespo
,
J.
,
Latorre
,
M.
, and
Montáns
,
F. J.
,
2017
, “
WYPiWYG Hyperelasticity for Isotropic, Compressible Materials
,”
Comput. Mech.
,
59
(
1
), pp.
73
92
.
28.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2013
, “
Extension of the Sussman–Bathe Spline-Based Hyperelastic Model to Incompressible Transversely Isotropic Materials
,”
Comput. Struct.
,
122
, pp.
13
26
.
29.
Latorre
,
M.
,
Peña
,
E.
, and
Montáns
,
F. J.
,
2016
, “
Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia From Experimental Data
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
799
810
.
30.
Romero
,
X.
,
Latorre
,
M.
, and
Montáns
,
F. J.
,
2017
, “
Determination of the WYPiWYG Strain Energy Density of Skin Through Finite Element Analysis of the Experiments on Circular Specimens
,”
Finite Elem. Anal. Des.
,
134
, pp.
1
15
.
31.
Latorre
,
M.
,
Romero
,
X.
, and
Montáns
,
F. J.
,
2016
, “
The Relevance of Transverse Deformation Effects in Modeling Soft Biological Tissues
,”
Int. J. Solid Struct.
,
99
, pp.
57
70
.
32.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2017
, “
WYPiWYG Hyperelasticity Without Inversion Formula: Application to Passive Ventricular Myocardium
,”
Comput. Struct.
,
185
, pp.
47
48
.
33.
Murphy
,
J. G.
,
2014
, “
Evolution of Anisotropy in Soft Tissue
,”
Proc. R. Soc. A
,
470
(
2161
), p. 20130548.
34.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2015
, “
Material-Symmetries Congruency in Transversely Isotropic and Orthotropic Hyperelastic Materials
,”
Eur. J. Mech. A
,
53
, pp.
99
106
.
35.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A. A.
, and
LeGrice
,
I. J.
,
2002
, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol.
,
283
(
6
), pp.
H2650
H2659
.
36.
Latorre
,
M.
, and
Montáns
,
F. J.
,
2016
, “
Stress and Strain Mapping Tensors and General Work-Conjugacy in Large Strain Continuum Mechanics
,”
Appl. Math. Modell.
,
40
(
5–6
), pp.
3938
3950
.
37.
Lubliner
,
J.
,
1985
, “
A Model of Rubber Viscoelasticity
,”
Mech. Res. Commun.
,
12
(
2
), pp.
93
99
.
38.
Purslow
,
P. P.
,
Wess
,
T. J.
, and
Hukins
,
D. W.
,
1998
, “
Collagen Orientation and Molecular Spacing During Creep and Stress-Relaxation in Soft Connective Tissues
,”
J. Exp. Biol.
,
201
(
Part 1
), pp.
135
142
.http://jeb.biologists.org/content/201/1/135
You do not currently have access to this content.