The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0–25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

References

References
1.
Bovenzi
,
M.
, and
Hulshof
,
C. T. J.
,
1998
, “
An Updated Review of Epidemiologic Studies on the Relationship Between Exposure to Whole-Body Vibration and Low Back Pain
,”
J. Sound Vib.
,
215
(
4
), pp.
595
611
.
2.
Tiemessen
,
I. J.
,
Hulshof
,
C. T. J.
, and
Frings-Dresen
,
M. H. W.
,
2007
, “
An Overview of Strategies to Reduce Whole-Body Vibration Exposure on Drivers: A Systematic Review
,”
Int J Ind. Ergon.
,
37
(
3
), pp.
245
256
.
3.
Johanning
,
E.
,
2015
, “
Whole-Body Vibration-Related Health Disorders in Occupational Medicine—An International Comparison
,”
Ergonomics
,
58
(
7
), pp.
1239
1252
.
4.
Griffin
,
M. J.
,
1990
,
Handbook of Human Vibration
,
Academic Press
,
New York
.
5.
Paddan
,
G. S.
, and
Griffin
,
M. J.
,
1993
, “
The Transmission of Translational Floor Vibration to the Heads of Standing Subjects
,”
J. Sound Vib.
,
160
(
3
), pp.
503
521
.
6.
Harazin
,
B.
, and
Grzesik
,
J.
,
1998
, “
The Transmission of Vertical Whole Body Vibration to the Body Segments of Standing Subjects
,”
J. Sound Vib.
,
215
(
4
), pp.
775
787
.
7.
Fard
,
A. M.
,
Ishihara
,
T.
, and
Inooka
,
H.
,
2003
, “
Dynamics of the Head-Neck Complex in Response to the Trunk Horizontal Vibration: Modeling and Identification
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
533
539
.
8.
Subashi
,
G. H. M. J.
,
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
2006
, “
Apparent Mass and Cross Axis Apparent Mass of Standing Subjects During Exposure to Vertical Whole Body Vibration
,”
J. Sound Vib.
,
293
(1–2), pp.
78
95
.
9.
Patra
,
S. K.
,
Rakheja
,
S.
,
Nelisse
,
H.
,
Boileau
,
P. E.
, and
Boutin
,
J.
,
2008
, “
Determination of Reference Values of Apparent Mass Responses of Seated Occupants of Different Body Masses Under Vertical Vibration With or Without a Back Support
,”
Int. J. Ind. Ergon.
,
38
(5–6), pp.
483
498
.
10.
Baig
,
H. A.
,
Dorman
,
D. B.
,
Bulka
,
B. A.
,
Shivers
,
B. L.
,
Chancey
,
V. C.
, and
Winkelstein
,
B. A.
,
2014
, “
Characterization of the Frequency and Muscle Responses of the Lumbar and Thoracic Spines of Seated Volunteers During Sinusoidal Whole Body Vibration
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101002
.
11.
Qassem
,
W.
,
Othman
,
M. O.
, and
Majeed
,
S. A.
,
1994
, “
The Effects of Vertical and Horizontal Vibrations on the Human Body
,”
Med. Eng. Phys.
,
16
(
2
), pp.
151
161
.
12.
Zong
,
Z.
, and
Lam
,
K. Y.
,
2002
, “
Biodynamic Response of Shipboard Sitting Subject to Ship Shock Motion
,”
J. Biomech.
,
35
(
1
), pp.
35
43
.
13.
Fritz
,
M
.,
2000
, “
Simulating the Response of a Standing Operator to Vibration Stress by Means of a Biomechanical Model
,”
J. Biomech.
,
33
(
7
), pp.
795
802
.
14.
Rosen
,
J.
, and
Arcan
,
M.
,
2003
, “
Modeling the Human Body/Seat System in a Vibration Environment
,”
ASME J. Biomech. Eng.
,
125
(2), pp.
223
231
.
15.
Kim
,
T. H.
,
Kim
,
Y. T.
, and
Yoon
,
Y. S.
,
2005
, “
Development of a Biomechanical Model of Human Body in a Sitting Posture With Vibration Transmissibility in the Vertical Direction
,”
Int. J. Ind. Ergon.
,
35
(
9
), pp.
817
829
.
16.
Subashi
,
G. H. M. J.
,
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
2008
, “
Modelling Resonances of the Standing Body Exposed to Vertical Whole-Body Vibration: Effects of Posture
,”
J. Sound Vib.
,
317
(1–2), pp.
400
418
.
17.
Garg
,
D. P.
, and
Ross
,
M. A.
,
1976
, “
Vertical Mode Human Body Vibration Transmissibility
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-6
(
2
), pp.
102
112
.
18.
Coermann
,
R. R.
,
1962
, “
The Mechanical Impedance of the Human Body in Sitting and Standing Position at Low Frequencies
,”
Hum. Factors
,
4
(
5
), pp.
227
253
.
19.
Suggs
,
C. W.
, and
Abrams
,
C. F.
, Jr.
,
1973
, “
Simulation of Whole Body Dynamics
,”
The Fifth Annual Southeastern Symposium on Systems Theory
, Raleigh, NC, Mar. 22–23, pp.
176
180
.
20.
Dempster
,
W. T.
,
1955
, “
Space Requirements of the Seated Operator
,” Wright Air Development Center, Dayton, OH, Technical Report No.
WADC-TR-55-159
.http://www.smpp.northwestern.edu/savedLiterature/DempsterEtAl.1955.pdf
21.
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
1998
, “
Dynamic Response of the Standing Human Body Exposed to Vertical Vibration: Influence of Posture and Vibration Magnitude
,”
J. Sound Vib.
,
212
(
1
), pp.
85
107
.
22.
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
2003
, “
Mathematical Models for the Apparent Masses of the Standing Subjects Exposed to Vertical Whole-Body Vibration
,”
J. Sound Vib.
,
260
(
3
), pp.
431
451
.
23.
Kitazaki
,
S.
, and
Griffin
,
M. J.
,
1997
, “
A Modal Analysis of Whole-Body Vertical Vibration, Using a Finite Element Model of the Human Body
,”
J. Sound Vib.
,
200
(
1
), pp.
83
103
.
24.
Liu
,
Y. K.
, and
Wickstrom
,
J. K.
,
1973
, “
Estimation of Inertial Property Distribution of the Human Torso From Segmented Cadaveric Data
,”
Perspectives in Biomedical Engineering: A Symposium
,
R. M.
Kenedi
, ed.,
University Park Press
, London, pp.
203
213
.
25.
Churchill
,
E.
,
Laubach
,
L. L.
,
Mcconville
,
J. T.
, and
Tebbetts
,
I.
,
1978
,
Anthropometric Source Book
(Anthropometry for Designers), Vol.
1
,
National Aeronautics and Space Administration
,
Houston, TX
.
26.
Markolf
,
K. L.
,
1970
, “
Stiffness and Damping Characteristics of the Thoracolumbar Spine
,”
Workshop on Bioengineering Approaches to Problems of the Spine
, Bethesda, MD, Sept. 12, pp.
87
143
.
27.
Panjabi
,
M. M.
,
Brand
,
R. A.
, Jr.
, and
White
,
A. A.
, III
,
1976
, “
Three Dimensional Flexibility and Stiffness Properties of Human Thoracic Spine
,”
J. Biomech.
,
9
(
4
), pp.
185
192
.
28.
Anderson
,
C. K.
,
Chaffin
,
D. B.
,
Herrin
,
G. D.
, and
Matthews
,
L. S.
,
1985
, “
A Biomechanical Model of the Lumbosacral Joint During Lifting Activities
,”
J. Biomech.
,
18
(
8
), pp.
571
584
.
29.
Luo
,
Z.
, and
Goldsmith
,
W.
,
1991
, “
Reaction of Human Head/Neck/Torso System to Shock
,”
J. Biomech.
,
24
(
7
), pp.
449
510
.
30.
ISO
,
1999
, “
Mechanical Vibration and Shock—Range of Idealized Values to Characterize Seated-Body Biodynamic Response Under Vertical Vibration
,” International Organization for Standards, Geneva, Switzerland, Technical Report No.
ISO/CD 5982
.https://www.iso.org/obp/ui/#iso:std:iso:5982:ed-2:v2:en
31.
Amirouche
,
F. M. L.
, and
Ider
,
S. K.
,
1988
, “
Simulation and Analysis of a Biodynamic Human Model Subjected to Low Accelerations—A Correlation Study
,”
J. Sound Vib.
,
123
(
2
), pp.
281
292
.
32.
Wisman
,
J.
,
1983
, “
Comparison of Mass Distribution Data of the Part 572 Dummy
,” Ohio State University, Columbus, OH.
33.
Amirouche
,
F. M. L.
,
Xie
,
M.
, and
Patwardhan
,
A.
,
1994
, “
Optimization of the Contact Damping and Stiffness Coefficients to Minimize Human Body Vibration
,”
ASME J. Biomech. Eng.
,
116
(
4
), pp.
413
420
.
34.
Bartz
,
J. A.
, and
Gianotti
,
G. R.
,
1975
, “
Computer Program to Generate Dimensional and Inertial Properties of the Human Body
,”
ASME J. Eng. Ind.
,
97
(
1
), pp.
49
57
.
35.
Nigam
,
S. P.
, and
Malik
,
M.
,
1987
, “
A Study on Vibratory Model of Human Body
,”
ASME J. Biomech. Eng.
,
109
(
2
), pp.
148
153
.
36.
Singh
,
I.
,
Nigam
,
S. P.
, and
Saran
,
V. H.
,
2015
, “
Modal Analysis of Human Body Vibration Model for Indian Subjects Under Sitting Posture
,”
Ergonomics
,
58
(
7
), pp.
1117
1132
.
37.
Ji
,
T
.,
1995
, “
A Continuous Model of the Vertical Vibration of a Human Body in a Standing Position
,”
UK Informal Group Meeting on Human Response to Vibration
, Bedford, UK, Sept. 18–20, pp.
18
20
.
38.
Ji
,
T.
, and
Zhou
,
D.
,
2013
, “
Models of Standing Human Body in Vertical Vibration
,”
Proc. Inst. Civ. Eng.: Struct. Build.
,
166
(
7
), pp.
367
378
.
39.
Gupta
,
T. C.
,
2007
, “
Identification and Experimental Validation of Damping Ratios of Different Human Body Segments Through Anthropometric Vibratory Model in Standing Posture
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
566
574
.
40.
Rakheja
,
S.
,
Dong
,
R. G.
,
Patra
,
S.
,
Boileau
,
P.-E.
,
Marcotte
,
P.
, and
Warrem
,
C.
,
2010
, “
Biodynamics of the Human Body Under Whole-Body Vibration: Synthesis of the Reported Data
,”
Int. J. Ind. Ergon.
,
40
(
6
), pp.
710
732
.
41.
Rao
,
J. S.
, and
Gupta
,
K.
,
1999
,
Theory and Practice of Mechanical Vibrations
,
New Age International
,
New Delhi, India
.
42.
Boileau
,
P.-E.
,
Rakheja
,
S.
, and
Wu
,
X.
,
2002
, “
A Body Mass Dependent Mechanical Impedance Model for Applications in Vibration Seat Testing
,”
J. Sound Vib.
,
253
(
1
), pp.
243
264
.
43.
Goldman
,
D. E.
, and
Von Gierke
,
H. E.
,
1961
, “
Effects of Shock and Vibration on Man
,”
Shock and Vibration Handbook
, Vol.
3
,
C. M.
Harris
, and
C. E.
Crede
, eds.,
McGraw-Hill
, New York, Chap. 44.
You do not currently have access to this content.