Pelvic organ prolapse (POP), downward descent of the pelvic organs resulting in a protrusion of the vagina, is a highly prevalent condition, responsible for 300,000 surgeries in the U.S. annually. Rectocele, a posterior vaginal wall (PVW) prolapse of the rectum, is the second most common type of POP after cystocele. A rectocele usually manifests itself along with other types of prolapse with multicompartment pelvic floor defects. To date, the specific mechanics of rectocele formation are poorly understood, which does not allow its early stage detection and progression prediction over time. Recently, with the advancement of imaging and computational modeling techniques, a plethora of finite element (FE) models have been developed to study vaginal prolapse from different perspectives and allow a better understanding of dynamic interactions of pelvic organs and their supporting structures. So far, most studies have focused on anterior vaginal prolapse (AVP) (or cystocele) and limited data exist on the role of pelvic muscles and ligaments on the development and progression of rectocele. In this work, a full-scale magnetic resonance imaging (MRI) based three-dimensional (3D) computational model of the female pelvic anatomy, comprising the vaginal canal, uterus, and rectum, was developed to study the effect of varying degrees (or sizes) of rectocele prolapse on the vaginal canal for the first time. Vaginal wall displacements and stresses generated due to the varying rectocele size and average abdominal pressures were estimated. Considering the direction pointing from anterior to posterior side of the pelvic system as the positive Y-direction, it was found that rectocele leads to negative Y-direction displacements, causing the vaginal cross section to shrink significantly at the lower half of the vaginal canal. Besides the negative Y displacements, the rectocele bulging was observed to push the PVW downward toward the vaginal hiatus, exhibiting the well-known “kneeling effect.” Also, the stress field on the PVW was found to localize at the upper half of the vaginal canal and shift eventually to the lower half with increase in rectocele size. Additionally, clinical relevance and implications of the results were discussed.

References

References
1.
Weber
,
A. M.
, and
Richter
,
H. E.
,
2005
, “
Pelvic Organ Prolapse
,”
Obstet. Gynecol.
,
106
(
3
), pp.
615
634
.
2.
Jelovsek
,
J. E.
,
Maher
,
C.
, and
Barber
,
M. D.
,
2007
, “
Pelvic Organ Prolapse
,”
Lancet
,
369
(
9566
), pp.
1027
1038
.
3.
Petros
,
P.
,
2004
,
The Female Pelvic Floor: Function, Dysfunction and Management According to the Integral Theory
,
Springer
, Berlin.
4.
Chanda
,
A.
,
Unnikrishnan
,
V.
,
Roy
,
S.
, and
Richter
,
H. E.
,
2015
, “
Computational Modeling of the Female Pelvic Support Structures and Organs to Understand the Mechanism of Pelvic Organ Prolapse: A Review
,”
ASME Appl. Mech. Rev.
,
67
(
4
), p.
040801
.
5.
Rostaminia
,
G.
, and
Abramowitch
,
S.
,
2015
, “
Finite Element Modeling in Female Pelvic Floor Medicine: A Literature Review
,”
Curr. Obstet. Gynecol. Rep.
,
4
(
2
), pp.
125
131
.
6.
Hsu
,
Y.
,
Chen
,
L.
,
Summers
,
A.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2008
, “
Anterior Vaginal Wall Length and Degree of Anterior Compartment Prolapse Seen on Dynamic MRI
,”
Int. Urogynecol. J.
,
19
(
1
), pp.
137
142
.
7.
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2009
, “
A 3D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation
,”
J. Biomech.
,
42
(
10
), pp.
1371
1377
.
8.
Hsu
,
Y.
,
Chen
,
L.
,
Tumbarello
,
J.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2010
, “
In Vivo Assessment of Anterior Compartment Compliance and Its Relation to Prolapse
,”
Int. Urogynecol. J.
,
21
(
9
), pp.
1111
1115
.
9.
Chanda
,
A.
,
Unnikrishnan
,
V.
,
Richter
,
H. E.
, and
Lockhart
,
M. E.
,
2015
, “
A Biofidelic Computational Model of the Female Pelvic System to Understand Effect of Bladder Fill and Progressive Vaginal Tissue Stiffening Due to Prolapse on Anterior Vaginal Wall
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(
11
), p. e02767.
10.
Luo
,
J.
,
Larson
,
K. A.
,
Fenner
,
D. E.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2012
, “
Posterior Vaginal Prolapse Shape and Position Changes at Maximal Valsalva Seen in 3-D MRI-Based Models
,”
Int. Urogynecol. J.
,
23
(
9
), pp.
1301
1306
.
11.
Weber
,
A. M.
,
Walters
,
M. D.
,
Ballard
,
L. A.
,
Booher
,
D. L.
, and
Piedmonte
,
M. R.
,
1998
, “
Posterior Vaginal Prolapse and Bowel Function
,”
Am. J. Obstet. Gynecol.
,
179
(
6
), pp.
1446
1450
.
12.
Parks
,
A.
,
Porter
,
N.
, and
Hardcastle
,
J.
,
1966
, “
The Syndrome of the Descending Perineum
,”
Proc. R. Soc. Med.
,
59
(
6
), pp.
477
482
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1900931/
13.
Henry
,
M.
,
Parks
,
A.
, and
Swash
,
M.
,
1982
, “
The Pelvic Floor Musculature in the Descending Perineum Syndrome
,”
Br. J. Surg.
,
69
(
8
), pp.
470
472
.
14.
Luo
,
J.
,
2012
, “
Biomechanical Analyses of Posterior Vaginal Prolapse: MR Imaging and Computer Modeling Studies
,”
Ph.D. thesis
,
The University of Michigan
, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/95942
15.
Bristow
,
R. E.
,
del Carmen
,
M. G.
,
Kaufman
,
H. S.
, and
Montz
,
F. J.
,
2003
, “
Radical Oophorectomy With Primary Stapled Colorectal Anastomosis for Resection of Locally Advanced Epithelial Ovarian Cancer
,”
J. Am. Coll. Surg.
,
197
(
4
), pp.
565
574
.
16.
Comiter
,
C. V.
,
Vasavada
,
S. P.
,
Barbaric
,
Z. L.
,
Gousse
,
A. E.
, and
Raz
,
S.
,
1999
, “
Grading Pelvic Prolapse and Pelvic Floor Relaxation Using Dynamic Magnetic Resonance Imaging
,”
Urology
,
54
(
3
), pp.
454
457
.
17.
Gousse
,
A. E.
,
Barbaric
,
Z. L.
,
Safir
,
M. H.
,
Madjar
,
S.
,
Marumoto
,
A. K.
, and
Raz
,
S.
,
2000
, “
Dynamic Half Fourier Acquisition, Single Shot Turbo Spin-Echo Magnetic Resonance Imaging for Evaluating the Female Pelvis
,”
J. Urol.
,
164
(
5
), pp.
1606
1613
.
18.
Kelvin
,
F.
, and
Maglinte
,
D.
,
1997
, “
Dynamic Cystoproctography of Female Pelvic Floor Defects and Their Interrelationships
,”
Am. J. Roentgenol.
,
169
(
3
), pp.
769
774
.
19.
Kester
,
R. R.
,
Leboeuf
,
L.
,
Amendola
,
M. A.
,
Kim
,
S. S.
,
Benoit
,
A.
, and
Gousse
,
A. E.
,
2003
, “
Value of Express T2-Weighted Pelvic MRI in the Preoperative Evaluation of Severe Pelvic Floor Prolapse: A Prospective Study
,”
Urology
,
61
(
6
), pp.
1135
1139
.
20.
Lewicky-Gaupp
,
C.
,
Yousuf
,
A.
,
Larson
,
K. A.
,
Fenner
,
D. E.
, and
Delancey
,
J. O.
,
2010
, “
Structural Position of the Posterior Vagina and Pelvic Floor in Women With and Without Posterior Vaginal Prolapse
,”
Am. J. Obstet. Gynecol.
,
202
(
5
), pp.
e491
e497
.
21.
Chanda
,
A.
, and
Ghoneim
,
H.
,
2015
, “
Pumping Potential of a Two-Layer Left-Ventricle-Like Flexible-Matrix-Composite Structure
,”
Compos. Struct.
,
122
, pp.
570
575
.
22.
Shin
,
D. S.
,
Chung
,
M. S.
,
Park
,
H. S.
,
Park
,
J. S.
, and
Hwang
,
S. B.
,
2011
, “
Browsing Software of the Visible Korean Data Used for Teaching Sectional Anatomy
,”
Anat. Sci. Educ.
,
4
(
6
), pp.
327
332
.
23.
Park
,
J. S.
,
Chung
,
M. S.
,
Hwang
,
S. B.
,
Shin
,
B. S.
, and
Park
,
H. S.
,
2006
, “
Visible Korean Human: Its Techniques and Applications
,”
Clin. Anat.
,
19
(
3
), pp.
216
224
.
24.
Park
,
J. S.
,
Chung
,
M. S.
,
Hwang
,
S. B.
,
Lee
,
Y. S.
,
Har
,
D.-H.
, and
Park
,
H. S.
,
2005
, “
Visible Korean Human: Improved Serially Sectioned Images of the Entire Body
,”
IEEE Trans. Med. Imag.
,
24
(
3
), pp.
352
360
.
25.
Top
,
A.
,
Hamarneh
,
G.
, and
Abugharbieh
,
R.
,
2013
, “
Turtleseg
,” University of British Columbia, Vancouver, BC, Canada.
26.
Wang
,
E.
,
Nelson
,
T.
, and
Rauch
,
R.
, 2004, “
Back to Elements-Tetrahedra vs. Hexahedra
,”
International ANSYS Conference
, Pittsburgh, PA, May 24–26.https://support.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/confpaper/2004-Int-ANSYS-Conf-9.PDF
27.
Chanda
,
A.
, and
Unnikrishnan
,
V.
,
2017
, “
Effect of Bladder and Rectal Loads on the Vaginal Canal and Levator Ani in Varying Pelvic Floor Conditions
,”
Mech. Adv. Mater. Struct.
, epub.
28.
Ashton-Miller
,
J. A.
, and
DeLancey
,
J.
,
2007
, “
Functional Anatomy of the Female Pelvic Floor
,”
Ann. N. Y. Acad. Sci.
,
1101
(
1
), pp.
266
296
.
29.
Beck
,
D. E.
, and
Allen
,
N. L.
,
2010
, “
Rectocele
,”
Clin. Colon Rectal Surg.
,
23
(
2
), pp.
90
98
.
30.
Spirka
,
T.
,
Kenton
,
K.
,
Brubaker
,
L.
, and
Damaser
,
M.
, “
Pathway to Finite Element Analysis of Stress Urinary Incontinence Mechanics
,”
ASME
Paper No. SBC2011-53050.
31.
Unnikrishnan
,
V. U.
,
Unnikrishnan
,
G. U.
, and
Reddy
,
J. N.
,
2012
, “
Biomechanics of Breast Tumor: Effect of Collagen and Tissue Density
,”
Int. J. Mech. Mater. Des.
,
8
(
3
), pp.
257
267
.
32.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
, and
Reddy
,
J. N.
,
2007
, “
Constitutive Material Modeling of Cell: A Micromechanics Approach
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
315
323
.
33.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
,
Reddy
,
J. N.
, and
Lim
,
C. T.
,
2010
, “
Review on the Constitutive Models of Tumor Tissue for Computational Analysis
,”
ASME Appl. Mech. Rev.
,
63
(
4
), p.
040801
.
34.
Martins
,
P.
,
Natal Jorge
,
R.
, and
Ferreira
,
A.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
35.
Chen
,
Z.-W.
,
Joli
,
P.
,
Feng
,
Z.-Q.
,
Rahim
,
M.
,
Pirró
,
N.
, and
Bellemare
,
M.-E.
,
2015
, “
Female Patient-Specific Finite Element Modeling of Pelvic Organ Prolapse (POP)
,”
J. Biomech.
,
48
(
2
), pp.
238
245
.
36.
Chanda
,
A.
,
Graeter
,
R.
, and
Unnikrishnan
,
V.
,
2015
, “
Effect of Blasts on Subject-Specific Computational Models of Skin and Bone Sections at Various Locations on the Human Body
,”
AIMS Mater. Sci.
,
2
(
4
), pp.
425
447
.
37.
Chanda
,
A.
,
Callaway
,
C.
,
Clifton
,
C.
, and
Unnikrishnan
,
V.
,
2016
,
Biofidelic Human Brain Tissue Surrogates
,
Taylor & Francis
, Philadelphia, PA.
38.
Chanda
,
A.
,
Unnikrishnan
,
V.
,
Flynn
,
Z.
, and
Lackey
,
K.
,
2016
, “
Experimental Study on Tissue Phantoms to Understand the Effect of Injury and Suturing on Human Skin Mechanical Properties
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
1
), pp.
80
91
.
39.
Chanda
,
A.
, and
Unnikrishnan
,
V.
,
2016
, “
A Realistic 3D Computational Model of the Closure of Skin Wound With Interrupted Sutures
,”
J. Mech. Med. Biol.
,
17
, p.
1750025
.
40.
Venugopala Rao
,
G.
,
Rubod
,
C.
,
Brieu
,
M.
,
Bhatnagar
,
N.
, and
Cosson
,
M.
,
2010
, “
Experiments and Finite Element Modelling for the Study of Prolapse in the Pelvic Floor System
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
349
357
.
41.
Boubaker
,
M. B.
,
Haboussi
,
M.
,
Ganghoffer
,
J.-F.
, and
Aletti
,
P.
,
2009
, “
Finite Element Simulation of Interactions Between Pelvic Organs: Predictive Model of the Prostate Motion in the Context of Radiotherapy
,”
J. Biomech.
,
42
(
12
), pp.
1862
1868
.
42.
Carter
,
D.
, and
Gabel
,
M. B.
,
2012
, “
Rectocele—Does the Size Matter?
,”
Int. J. Colorectal Dis.
,
27
(
7
), pp.
975
980
.
You do not currently have access to this content.