The feasibility of implementing magnetic struts into drug-eluting stents (DESs) to mitigate the adverse hemodynamics which precipitate stent thrombosis is examined. These adverse hemodynamics include platelet-activating high wall shear stresses (WSS) and endothelial dysfunction-inducing low wall shear stresses. By magnetizing the stent struts, two forces are induced on the surrounding blood: (1) magnetization forces which reorient red blood cells to align with the magnetic field and (2) Lorentz forces which oppose the motion of the conducting fluid. The aim of this study was to investigate whether these forces can be used to locally alter blood flow in a manner that alleviates the thrombogenicity of stented vessels. Two-dimensional steady-state computational fluid dynamics (CFD) simulations were used to numerically model blood flow over a single magnetic drug-eluting stent strut with a square cross section. The effects of magnet orientation and magnetic flux density on the hemodynamics of the stented vessel were elucidated in vessels transporting oxygenated and deoxygenated blood. The simulations are compared in terms of the size of separated flow regions. The results indicate that unrealistically strong magnets would be required to achieve even modest hemodynamic improvements and that the magnetic strut concept is ill-suited to mitigate stent thrombosis.

References

References
1.
Joner
,
M.
,
Finn
,
A. V.
,
Farb
,
A.
,
Mont
,
E. K.
,
Kolodgie
,
F. D.
,
Ladich
,
E.
,
Kutys
,
R.
,
Skorjia
,
K.
,
Gold
,
H. K.
, and
Virmani
,
R.
,
2006
, “
Pathology of Drug-Eluting Stents in Humans
,”
J. Am. Coll. Cardiol.
,
48
(
1
), pp.
193
202
.
2.
Iakovou
,
I.
,
Schmidt
,
T.
,
Bonizzoni
,
E.
,
Ge
,
L.
,
Sangiorgi
,
G. M.
,
Stankovic
,
G.
,
Airoldi
,
F.
,
Chieffo
,
A.
,
Montorfano
,
M.
,
Carlino
,
M.
,
Michev
,
I.
,
Corvaja
,
N.
,
Briguori
,
C.
,
Gerckens
,
U.
,
Grube
,
E.
, and
Colombo
,
A.
,
2005
, “
Incidence, Predictors, and Outcomes of Thrombosis After Successful Implantation of Drug-Eluting Stents
,”
JAMA
,
293
(
17
), pp.
2126
2130
.
3.
Moreno
,
R.
,
Fernandez
,
C.
,
Hernandez
,
R.
,
Alfonso
,
F.
,
Angiolillo
,
D. J.
,
Sabaté
,
M.
,
Escaned
,
J.
,
Bañuelos
,
C.
,
Fernández-Ortiz
,
A.
, and
Macaya
,
C.
,
2005
, “
Drug-Eluting Stent Thrombosis: Results From a Pooled Analysis Including 10 Randomized Studies
,”
J. Am. Coll. Cardiol.
,
45
(
6
), pp.
954
959
.
4.
Ong
,
A. T.
,
McFadden
,
E. P.
,
Regar
,
E.
,
de Jaegere
,
P. P.
,
van Domburg
,
R. T.
, and
Serruys
,
P. W.
,
2005
, “
Late Angiographic Stent Thrombosis (LAST) Events With Drug-Eluting Stents
,”
J. Am. Coll. Cardiol.
,
45
(
12
), pp.
2088
2092
.
5.
Pfisterer
,
M.
,
Brunner-La Rocca
,
H. P.
,
Buser
,
P. T.
,
Rickenbacher
,
P.
,
Hunziker
,
P.
,
Mueller
,
C.
,
Jeger
,
R.
,
Bader
,
F.
,
Osswald
,
S.
, and
Kaiser
,
C.
,
2006
, “
Late Clinical Events After Clopidogrel Discontinuation May Limit the Benefit of Drug-Eluting Stents: An Observational Study of Drug-Eluting Versus Bare-Metal Stents
,”
J. Am. Coll. Cardiol.
,
48
(
12
), pp.
2584
2591
.
6.
Koskinas
,
K. C.
,
Chatzizisis
,
Y. S.
,
Antoniadis
,
A. P.
, and
Giannoglou
,
G. D.
,
2012
, “
Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis: Pathophysiologic Mechanisms and Implications for Clinical Translation
,”
J. Am. Coll. Cardiol.
,
59
(
15
), pp.
1337
1349
.
7.
Akagawa
,
E.
,
Ookawa
,
K.
, and
Ohshima
,
N.
,
2004
, “
Endovascular Stent Configuration Affects Intraluminal Flow Dynamics and In Vitro Endothelialization
,”
Biorheology
,
41
(
6
), pp.
665
680
.
8.
Holme
,
P. A.
,
Ørvim
,
U.
,
Hamers
,
M. J. A. G.
,
Solum
,
N. O.
,
Brosstad
,
F. R.
,
Barstad
,
R. M.
, and
Sakariassen
,
K. S.
,
1997
, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
(
4
), pp.
646
653
.
9.
Tzirtzilakis
,
E. E.
,
2005
, “
A Mathematical Model for Blood Flow in Magnetic Field
,”
Phys. Fluids
,
17
(
7
), p.
077103
.
10.
Vijayaratnam
,
P. R. S.
,
O'Brien
,
C. C.
,
Reizes
,
J. A.
,
Barber
,
T. J.
, and
Edelman
,
E. R.
, 2015, “
The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations
,”
PLoS One
,
10
(
6
), p.
e0128178
.
11.
Van Jaarsveld
,
B. C.
,
Krijnen
,
P.
,
Pieterman
,
H.
,
Derkx
,
F. H. M.
,
Deinum
,
J.
,
Postma
,
C. T.
,
Dees
,
A.
,
Woittiez
,
A. J.
,
Bartelink
,
A. K.
,
Man in 't Veld
,
A. J.
, and
Schalekamp
,
M. A.
,
2000
, “
The Effect of Balloon Angioplasty on Hypertension in Atherosclerotic Renal-Artery Stenosis
,”
N. Engl. J. Med.
,
342
(
14
), pp.
1007
1014
.
12.
White
,
C. J.
,
Ramee
,
S. R.
,
Collins
,
T. J.
,
Jenkins
,
J. S.
,
Escobar
,
A.
, and
Shaw
,
D.
,
1997
, “
Renal Artery Stent Placement: Utility in Lesions Difficult to Treat With Balloon Angioplasty
,”
J. Am. Coll. Cardiol.
,
30
(
6
), pp.
1445
1450
.
13.
Rocha-Singh
,
K.
,
Jaff
,
M. R.
, and
Rosenfeld
,
K.
,
2005
, “
ASPIRE-2 Trial Investigators Evaluation of the Safety and Effectiveness of Renal Artery Stenting After Unsuccessful Balloon Angioplasty: The ASPIRE-2 Study
,”
J. Am. Coll. Cardiol.
,
46
(
5
), pp.
776
783
.
14.
Dorros
,
G.
,
Prince
,
C.
, and
Mathiak
,
L.
,
1993
, “
Stenting of a Renal Artery Stenosis Achieves Better Relief of the Obstructive Lesion Than Balloon Angioplasty
,”
Catheterization Cardiovasc. Diagn.
,
29
(
3
), pp.
191
198
.
15.
Yamamoto
,
T.
,
Ogasawara
,
Y.
,
Kimura
,
A.
,
Tanaka
,
H.
,
Hiramatsu
,
O.
,
Tsujioka
,
K.
,
Lever
,
M. J.
,
Parker
,
K. H.
,
Jones
,
C. J.
,
Caro
,
C. G.
, and
Kajiya
,
F.
,
1996
, “
Blood Velocity Profiles in the Human Renal Artery by Doppler Ultrasound and Their Relationship to Atherosclerosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
16
(
1
), pp.
172
177
.
16.
Gabriel
,
S.
,
Lau
,
R. W.
, and
Gabriel
,
C.
,
1996
, “
The Dielectric Properties of Biological Tissues—III: Parametric Models for the Dielectric Spectrum of Tissues
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2271
2293
.
17.
Frewer
,
R. A.
,
1974
, “
The Electrical Conductivity of Flowing Blood
,”
Biomed. Eng.
,
9
(12), p.
552
.
18.
Motta
,
M.
,
Haik
,
Y.
,
Gandhari
,
A.
, and
Chen
,
C. J.
,
1998
, “
High Magnetic Field Effects on Human Deoxygenated Hemoglobin Light Absorption
,”
Bioelectrochem. Bioenerg.
,
47
(
2
), pp.
297
300
.
19.
Haik
,
Y.
,
Pai
,
V.
, and
Chen
,
C. J.
,
1999
, “
Biomagnetic Fluid Dynamics
,”
Fluid Dynamics at Interfaces
,
W.
Shyy
and
R.
Narayanan
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
439
452
.
20.
Furlani
,
E. P.
,
2001
,
Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications
,
Academic Press
,
San Diego, CA
, Chap. 4.
21.
O'Brien
,
C. C.
,
Kolachalama
,
V. B.
,
Barber
,
T. J.
,
Simmons
,
A.
, and
Edelman
,
E. R.
,
2013
, “
Impact of Flow Pulsatility on Arterial Drug Distribution in Stent-Based Therapy
,”
J. Controlled Release
,
168
(
2
), pp.
115
124
.
22.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.
You do not currently have access to this content.