Accurate stress and strain calculations are important for plaque progression and vulnerability assessment. Models based on in vivo data often need to form geometries with zero-stress/strain conditions. The goal of this paper is to use IVUS-based near-idealized geometries and introduce a three-step model construction process to include residual stress, axial shrinkage, and circumferential shrinkage and investigate their impacts on stress and strain calculations. In Vivo intravascular ultrasound (IVUS) data of human coronary were acquired for model construction. In Vivo IVUS movie data were acquired and used to determine patient-specific material parameter values. A three-step modeling procedure was used to make our model: (a) wrap the zero-stress vessel sector to obtain the residual stress; (b) stretch the vessel axially to its length in vivo; and (c) pressurize the vessel to recover its in vivo geometry. Eight models were constructed for our investigation. Wrapping led to reduced lumen and cap stress and increased out boundary stress. The model with axial stretch, circumferential shrink, but no wrapping overestimated lumen and cap stress by 182% and 448%, respectively. The model with wrapping, circumferential shrink, but no axial stretch predicted average lumen stress and cap stress as 0.76 kPa and −15 kPa. The same model with 10% axial stretch had 42.53 kPa lumen stress and 29.0 kPa cap stress, respectively. Skipping circumferential shrinkage leads to overexpansion of the vessel and incorrect stress/strain calculations. Vessel stiffness increase (100%) leads to 75% lumen stress increase and 102% cap stress increase.

References

References
1.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effect of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
(
4
), pp.
850
858
.
2.
Richardson
,
P. D.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
524
536
.
3.
Tang
,
D.
,
Kamm
,
R. D.
,
Yang
,
C.
,
Zheng
,
J.
,
Canton
,
G.
,
Bach
,
R.
,
Huang
,
X.
,
Hatsukami
,
T. S.
,
Zhu
,
J.
,
Ma
,
G.
,
Maehara
,
A.
,
Mintz
,
G. S.
, and
Yuan
,
C.
,
2014
, “
Image-Based Modeling for Better Understanding and Assessment of Atherosclerotic Plaque Progression and Vulnerability: Data, Modeling, Validation, Uncertainty and Predictions
,”
J. Biomech.
,
47
(
4
), pp.
834
846
.
4.
Stone
,
P. H.
,
Saito
,
S.
,
Takahashi
,
S.
,
Makita
,
Y.
,
Nakamura
,
S.
,
Kawasaki
,
T.
,
Takahashi
,
A.
,
Katsuki
,
T.
,
Nakamura
,
S.
,
Namiki
,
A.
,
Hirohata
,
A.
,
Matsumura
,
T.
,
Yamazaki
,
S.
,
Yokoi
,
H.
,
Tanaka
,
S.
,
Otsuji
,
S.
,
Yoshimachi
,
F.
,
Honye
,
J.
,
Harwood
,
D.
,
Reitman
,
M.
,
Coskun
,
A. U.
,
Papafaklis
,
M. I.
, and
Feldman
,
C. L.
,
2012
, “
Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics: The Prediction Study
,”
Circulation
,
126
(
2
), pp.
172
81
.
5.
Wang
,
L.
,
Zheng
,
J.
,
Maehara
,
A.
,
Yang
,
C.
,
Billiar
,
K. L.
,
Wu
,
Z.
,
Bach
,
R.
,
Muccigrosso
,
D.
,
Mintz
,
G. S.
, and
Tang
,
D.
,
2015
, “
Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations With Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-Patient Study
,”
PLoS Comput. Biol.
,
11
(
12
), p.
e1004652
.
6.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
,
2009
, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
(
10
), pp.
3258
3263
.
7.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.
8.
Teng
,
Z.
,
Brown
,
A. J.
,
Calvert
,
P. A.
,
Parker
,
R. A.
,
Obaid
,
D. R.
,
Huang
,
Y.
,
Hoole
,
S. P.
,
West
,
N. E.
,
Gillard
,
J. H.
, and
Bennett
,
M. R.
,
2014
, “
Coronary Plaque Structural Stress Is Associated With Plaque Composition and Subtype and Higher in Acute Coronary Syndrome: The BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) Study
,”
Circ. Cardiovasc. Imaging
,
7
(
3
), pp.
461
470
.
9.
Finet
,
G.
,
Ohayon
,
J.
, and
Rioufol
,
G.
,
2004
, “
Biomechanical Interaction Between Cap Thickness, Lipid Core Composition and Blood Pressure in Vulnerable Coronary Plaque: Impact on Stability or Instability
,”
Coronary Artery Dis.
,
15
(
1
), pp.
13
20
.
10.
Hetterich
,
H.
,
Jaber
,
A.
,
Gehring
,
M.
,
Curta
,
A.
,
Bamberg
,
F.
,
Filipovic
,
N.
, and
Rieber
,
J.
,
2015
, “
Coronary Computed Tomography Angiography Based Assessment of Endothelial Shear Stress and Its Association With Atherosclerotic Plaque Distribution In-Vivo
,”
PLoS One
,
10
(
1
), p.
e0115408
.
11.
Fung
,
Y. C.
,
1994
,
A First Course in Continuum Mechanics
,
Prentice Hall
,
Englewood Cliffs, NJ
, Chap. 13.
12.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1992
, “
Strain Distribution in Small Blood Vessel With Zero-Stress State Taken Into Consideration
,”
Am. J. Physiol.
,
262
(
2
), pp.
H544
H552
.http://ajpheart.physiology.org/content/262/2/H544
13.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, Jr.
, and
Meister
,
J. J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.
14.
Ohayon
,
J.
,
Dubreuil
,
O.
,
Tracqui
,
P.
,
Le Floc'h
,
S.
,
Rioufol
,
G.
,
Chalabreysse
,
L.
,
Thivolet
,
F.
,
Pettigrew
,
R. I.
, and
Finet
,
G.
,
2007
, “
Influence of Residual Stress/Strain on the Biomechanical Stability of Vulnerable Coronary Plaques: Potential Impact for Evaluating the Risk of Plaque Rupture
,”
Am. J. Physiol.
,
293
(
3
), pp.
H1987
H1996
.
15.
Huang
,
X.
,
Yang
,
C.
,
Yuan
,
C.
,
Liu
,
F.
,
Canton
,
G.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
, and
Tang
,
D.
,
2009
, “
Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data
,”
Mol. Cell. Biomech.
,
6
(
2
), pp.
121
134
.
16.
Speelman
,
L.
,
Bosboom
,
E. M.
,
Schurink
,
G. W.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M. J.
, and
van de Vosse
,
F. N.
,
2009
, “
Initial Stress and Nonlinear Material Behavior in Patient-Specific AAA Wall Stress Analysis
,”
J. Biomech.
,
42
(
11
), pp.
1713
1719
.
17.
Holzapel
,
G. A.
,
Sommer
,
G.
,
Auer
,
M.
,
Regitnig
,
P.
, and
Ogden
,
R. W.
,
2007
, “
Layer-Specific 3D Residual Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
530
545
.
18.
Pierce
,
D. M.
,
Fastl
,
T. E.
,
Rodriguez-Vila
,
B.
,
Verbrugghe
,
P.
,
Fourneau
,
I.
,
Maleux
,
G.
,
Herijgers
,
P.
,
Gomez
,
E. J.
, and
Holzapfel
,
G. A.
,
2015
, “
A Method for Incorporating Three-Dimensional Residual Stretches/Stresses Into Patient-Specific Finite Element Simulation of Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
47
, pp.
147
164
.
19.
Gee
,
M. W.
,
Förster
,
C. H.
, and
Wall
,
W. A.
,
2010
, “
A Computational Strategy for Prestressing Patient-Specific Biomechanical Problems Under Finite Deformation
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
1
), pp.
52
72
.
20.
Mintz
,
G. S.
,
Nissen
,
S. E.
,
Anderson
,
W. D.
,
Bailey
,
S. R.
,
Erbel
,
R.
,
Fitzgerald
,
P. J.
,
Pinto
,
F. J.
,
Rosenfield
,
K.
,
Siegel
,
R. J.
,
Tuzcu
,
E. M.
, and
Yock
,
P. G.
,
2001
, “
American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS): A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents
,”
J. Am. Coll. Cardiol.
,
37
(
5
), pp.
1478
1492
.
21.
Nair
,
A.
,
Kuban
,
B. D.
,
Tuzcu
,
E. M.
,
Schoenhagen
,
P.
,
Nissen
,
S. E.
, and
Vince
,
D. G.
,
2002
, “
Coronary Plaque Classification With Intravascular Ultrasound Radiofrequency Data Analysis
,”
Circulation
,
106
(
17
), pp.
2200
2206
.
22.
Liu
,
H.
,
Cai
,
M.
,
Yang
,
C.
,
Zheng
,
J.
,
Bach
,
R.
,
Kural
,
M. H.
,
Billiar
,
K. L.
,
Muccigrosso
,
D.
,
Lu
,
D.
, and
Tang
,
D.
,
2012
, “
IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment
,”
Mol. Cell. Biomech.
,
9
(
1
), pp.
77
93
.
23.
Bathe
,
K. J.
, ed.,
2002
,
Theory and Modeling Guide
, Vol I:
ADINA, ADINA R & D
,
Watertown, MA
.
24.
Bathe
,
K. J.
, ed.,
2002
,
Theory and Modeling Guide
, Vol II:
ADINA-F, ADINA R & D
,
Watertown, MA
.
25.
Yang
,
C.
,
Bach
,
R. G.
,
Zheng
,
J.
,
Naqa
,
I. E.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K. L.
, and
Tang
,
D.
,
2009
, “
In Vivo IVUS-Based 3D Fluid Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.
26.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1
), pp.
1
48
.
27.
Liu
,
H.
,
Canton
,
G.
,
Yuan
,
C.
,
Yang
,
C.
,
Billiar
,
K. L.
,
Teng
,
Z.
,
Hoffman
,
A. H.
, and
Tang
,
D.
,
2012
, “
Using In Vivo Cine and 3D Multi-Contrast MRI to Determine Human Atherosclerotic Carotid Artery Material Properties and Circumferential Shrinkage Rate and Their Impact on Stress/Strain Predictions
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011008
.
28.
Kural
,
M. H.
,
Cai
,
M.
,
Tang
,
D.
,
Gwyther
,
T.
,
Zheng
,
J.
, and
Billiar
,
K. L.
,
2012
, “
Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling
,”
J. Biomech.
,
45
(
5
), pp.
790
798
.
You do not currently have access to this content.