The purpose of this work is to predict the effect of impaired red blood cells (RBCs) deformability on blood flow conditions in human carotid artery bifurcation. First, a blood viscosity model is developed that predicts the steady-state blood viscosity as a function of shear rate, plasma viscosity, and mechanical (and geometrical) properties of RBC's. Viscosity model is developed by modifying the well-known Krieger and Dougherty equation for monodisperse suspensions by using the dimensional analysis approach. With the approach, we manage to account for the microscopic properties of RBC's, such as their deformability, in the macroscopic behavior of blood via blood viscosity. In the second part of the paper, the deduced viscosity model is used to numerically predict blood flow conditions in human carotid artery bifurcation. Simulations are performed for different values of RBC's deformability and analyzed by investigating parameters, such as the temporal mean wall shear stress (WSS), oscillatory shear index (OSI), and mean temporal gradient of WSS. The analyses show that the decrease of RBC's deformability decrease the regions of low WSS (i.e., sites known to be prevalent at atherosclerosis-prone regions); increase, in average, the value of WSS along the artery; and decrease the areas of high OSI. These observations provide an insight into the influence of blood's microscopic properties, such as the deformability of RBC's, on hemodynamics in larger arteries and their influence on parameters that are known to play a role in the initiation and progression of atherosclerosis.

References

References
1.
Warboys
,
C. M.
,
Amini
,
N.
,
De Luca
,
A.
, and
Evens
,
P. C.
,
2011
, “
The Role of Blood Flow in Determining the Sites of Atherosclerotic Plaques
,”
F1000 Med. Rep.
,
3
, p.
5
.
2.
Shaaban
,
A. M.
, and
Duerinckx
,
A. J.
,
2000
, “
Wall Shear Stress and Early Atherosclerosis: A Review
,”
AJR. Am. J. Roentgenol.
,
174
(
6
), pp.
1657
1665
.
3.
Shin
,
S.
,
Ku
,
Y.
,
Babu
,
N.
, and
Singh
,
M.
,
2007
, “
Erythrocyte Deformability and Its Variation in Diabetes Mellitus
,”
Indian J. Exp. Biol.
,
45
(
1
), pp.
121
128
.
4.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
, pp.
241
262
.
5.
Walburn
,
F. J.
, and
Schneck
,
D. J.
,
1976
, “
A Constitutive Equation for Whole Human Blood
,”
Biorheology
,
13
(
3
), pp.
201
210
.
6.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properites of Living Tissues
,
Springer
,
Berlin
.
7.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
,
1994
, “
Simulation of Non-Newtonian Blood Flow in an End-to-End Anastomosis
,”
Biorheology
,
31
(
5
), pp.
565
586
.
8.
Johnston
,
M. B.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.
9.
Krieger
,
I. M.
, and
Dougherty
,
T. J.
,
1959
, “
Concentration Dependence of the Viscosity of Suspensions
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
137
152
.
10.
Pal
,
R.
,
2003
, “
Rheology of Concentrated Suspensions of Deformable Elastic Particles Such as Human Erythrocytes
,”
J. Biomech.
,
36
(
7
), pp.
981
989
.
11.
Snabre
,
P.
, and
Mills
,
P.
,
1996
, “
Rheology of Weakly Flocculated Suspensions of Rigid Particles
,”
J. Phys. III
,
6
(
12
), pp.
1811
1836
.
12.
Wildemuth
,
C. R.
, and
Williams
,
M. C.
,
1984
, “
Viscosity of Suspensions Modeled With a Shear-Dependent Maximum Packing Fraction
,”
Rheol. Acta
,
23
(
6
), pp.
627
635
.
13.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2006
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations
,”
J. Biomech.
,
39
(
6
), pp.
1116
1128
.
14.
Razavi
,
A.
,
Shirani
,
E.
, and
Sadeghi
,
M. R.
,
2011
, “
Numerical Simulation of Blood Pulsatile Flow in a Stenosed Carotid Artery Using Different Rheological Models
,”
J. Biomech.
,
44
(
11
), pp.
2021
2030
.
15.
Chien
,
S.
,
1970
, “
Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity
,”
Science
,
168
(
3934
), pp.
977
979
.
16.
Chien
,
S.
,
Usami
,
S.
,
Taylor
,
H. M.
,
Lundberg
,
J. L.
, and
Gregersen
,
M. I.
,
1966
, “
Effecs of Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates
,”
J. Appl. Physiol.
,
21
(
1
), pp.
81
87
.
17.
Miragliotta
,
G.
,
2011
, “
The Power of Dimensional Analysis in Production Systems Design
,”
Int. J. Prod. Econ.
,
131
(
1
), pp.
175
182
.
18.
Gijsen
,
F. J. H.
,
Van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.
19.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb. Hemostasis
,
29
(
5
), pp.
435
450
.
20.
Merrill
,
E. W.
,
Benis
,
M. A.
,
Gilliland
,
E. R.
,
Sherwood
,
T. K.
, and
Salzman
,
E. W.
,
1965
, “
Pressure-Flow Relations of Human Blood Flow in Hollow Fibers at Low Flow Rates
,”
J. Appl. Physiol.
,
20
(
5
), pp.
954
967
.
21.
Skalak
,
R.
,
Ozkaya
,
N.
, and
Skalak
,
T. C.
,
1989
, “
Biofluid mechanics
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
167
204
.
22.
Mohandas
,
N.
,
Clark
,
M. R.
,
Jacobs
,
M. S.
, and
Shohet
,
S. B.
,
1980
, “
Analysis of Factors Regulating Erythrocyte Deformability
,”
J. Clin. Invest.
,
66
(
3
), pp.
563
573
.
23.
Kang
,
S. I.
,
2002
, “
A Microscopic Study on the Rheological Properties of Human Blood in Low Concentration Limit
,”
Korea-Australia Rheol. J.
,
14
(
2
), pp.
77
86
.
24.
Potanin
,
A. A.
,
De Rooij
,
R.
,
Van den Ende
,
D.
, and
Mellema
,
J.
,
1995
, “
Microrheological Modeling of Weakly Aggregated Dispersions
,”
J. Chem. Phys.
,
102
(
14
), p.
5845
.
25.
Genovese
,
D. B.
,
2012
, “
Shear Rheology of Hard-Sphere, Dispersed, and Aggregated Suspensions, and Filler-Matrix Composites
,”
Adv. Colloid Interface Sci.
,
171–172
, pp.
1
16
.
26.
Chien
,
S.
,
Usami
,
S.
,
Dellenback
,
R. J.
, and
Gregersen
,
M. I.
,
1970
, “
Shear-Dependent Deformation of Erythrocytes in Rheology of Human Blood
,”
Am. J. Physiol.
,
219
(
1
), pp.
136
142
.
27.
Grover
,
W. H.
,
Bryan
,
A. K.
,
Diez-Silva
,
M.
,
Suresh
,
S.
,
Higgins
,
J. M.
, and
Manalis
,
S. R.
,
2011
, “
Measuring Single-Cell Density
,”
Proc. Natl. Acad. Sci.
,
108
(
27
), pp.
10992
10996
.
28.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
,
2003
, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
2259
2280
.
29.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
77
85
.
30.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
,
1971
, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London Ser. B, Biol. Sci.
,
177
(
1046
), pp.
109
159
.
31.
Milner
,
J. S.
,
Moore
,
J. A.
,
Ruut
,
B. K.
, and
Steinman
,
D. A.
,
1998
, “
Hemodynamics of Human Carotid Artery Bifurcation: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
,
28
(
1
), pp.
143
156
.
32.
Botnar
,
R.
,
Rappitsch
,
G.
,
Scheidegger
,
M. B.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
,
2000
, “
Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and In Vitro MRI Measurements
,”
J. Biomech.
,
33
(
2
), pp.
137
144
.
33.
Gallo
,
D.
,
Steinman
,
D. A.
, and
Morbiducci
,
U.
,
2016
, “
Insights Into the Co-Localization of Magnitude-Based Versus Direction-Based Indicators of Disturbed Shear at the Carotid Bifurcation
,”
J. Biomech.
,
49
(
12
), pp.
2413
2419
.
34.
Davies
,
P. F.
,
2009
, “
Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology
,”
Nat. Clin, Practice, Cardiovasc. Med.
,
6
(
1
), pp.
16
26
.
35.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
,
2004
, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model Mechanobiol.
,
3
(
1
), pp.
17
32
.
36.
Tada
,
S.
, and
Tarbell
,
J. M.
,
2005
, “
A Computational Study of Flow in a Compliant Carotid Bifurcation-Stress Phase Angle Correlation With Shear Stress
,”
Ann. Biomed. Eng.
,
33
(
9
), pp.
1202
1212
.
37.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
38.
Celik
,
I. B.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
.
39.
Prakash
,
S.
, and
Ethier
,
C. R.
,
2001
, “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
134
144
.
40.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.
41.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
42.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.
43.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J. A.
,
1999
, “
Temporal Gradient in Shear But not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells: Role of NO, NF Kappa B, and egr-1
,”
Arterioscler. Thromb. Vasc. Biol.
,
19
(
4
), pp.
996
1003
.
44.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chung
,
C.
,
Chan
,
R. C.
, and
Kamm
,
R. D.
,
2003
, “
Computational Analysis of the Effects of Exercise on Hemodynamics in the Carotid Bifurcation
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
995
1006
.
45.
Chen
,
G.
,
Zhao
,
L.
,
Liu
,
Y. W.
,
Liao
,
F. L.
,
Han
,
D.
, and
Zhou
,
H.
,
2012
, “
Regulation of Blood Viscosity in Disease Prevention and Treatment
,”
Chinese Sci. Bull.
,
57
(
16
), pp.
1946
1952
.
46.
Pehlivanoglu
,
B.
,
Dikmenoglu
,
N.
, and
Balkanci
,
D. Z.
,
2007
, “
Effect of Stress on Erythrocyte Deformability, Influence of Gender and Menstrual Cycle
,”
Clin. Hemorheol. Microcirc.
,
37
, pp.
301
308
.
47.
Papaharilaou
,
Y.
,
Aristokleous
,
N.
,
Seimenis
,
I.
,
Khozeymeh
,
M. I.
,
Georgiou
,
G. C.
,
Brott
,
B. C.
,
Eracleous
,
E.
, and
Anayiotos
,
A. S.
,
2013
, “
Effect of Head Posture on the Healthy Human Carotid Bifurcation Hemodynamics
,”
Med. Biol. Eng. Comput.
,
51
(
1
), pp.
207
218
.
48.
Uematsu
,
M.
,
Kitabatake
,
A.
,
Tanouchi
,
J.
,
Doi
,
Y.
,
Masuyama
,
T.
,
Fujii
,
K.
,
Yoshida
,
Y.
,
Ito
,
H.
,
Ishihara
,
K.
,
Hori
,
M.
,
Inoue
,
M.
, and
Kamada
,
T.
,
1991
, “
Reduction of Endothelial Microfilament Bundles in the Low-Shear Region of the Canine Aorta. Association With Intimal Plaque Formation in Hypercholesterolemia
,”
Arterioscler. Thromb.
,
11
(
1
), pp.
107
115
.
49.
Sawchuk
,
A. P.
,
Unthank
,
J. L.
, and
Dalsing
,
M. C.
,
1999
, “
Drag Reducing Polymers May Decrease Atherosclerosis by Increasing Shear in Areas Normally Exposed to Low Shear Stress
,”
J. Vasc. Surg.
,
30
(
4
), pp.
761
764
.
50.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
28
(
2
), pp.
2035
2042
.
51.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Am. Phys. Soc.
,
4
(4), pp.
345
376
.
52.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1994
,
Fundamentals of Fluid Mechanics
,
Wiley
,
New York
.
You do not currently have access to this content.