Ex vivo mechanical testing has provided tremendous insight toward prediction of the in vivo mechanical behavior and local mechanical environment of the arterial wall; however, the role of perivascular support on the local mechanical behavior of arteries is not well understood. Here, we present a novel approach for quantifying the impact of the perivascular support on arterial mechanics using intravascular ultrasound (IVUS) on cadaveric porcine hearts. We performed pressure-diameter tests (n = 5) on the left anterior descending coronary arteries (LADCAs) in situ while embedded in their native perivascular environment using IVUS imaging and after removal of the perivascular support of the artery. We then performed standard cylindrical biaxial testing on these vessels ex vivo and compared the results. Removal of the perivascular support resulted in an upward shift of the pressure-diameter curve. Ex vivo testing, however, showed significantly lower circumferential compliance compared to the in situ configuration. On a second set of arteries, local axial stretch ratios were quantified (n = 5) along the length of the arteries. The average in situ axial stretch ratio was 1.28 ± 0.16; however, local axial stretch ratios showed significant variability, ranging from 1.01 to 1.70. Taken together, the data suggest that both the perivascular loading and the axial tethering have an important role in arterial mechanics. Combining nondestructive testing using IVUS with traditional ex vivo cylindrical biaxial testing yields a more comprehensive assessment of the mechanical behavior of arteries.

References

References
1.
Kamenskiy
,
A. V.
,
Pipinos
,
I. I.
,
Dzenis
,
Y. A.
,
Phillips
,
N. Y.
,
Desyatova
,
A. S.
,
Kitson
,
J.
,
Bowen
,
R.
, and
MacTaggart
,
J. N.
,
2015
, “
Effects of Age on the Physiological and Mechanical Characteristics of Human Femoropopliteal Arteries
,”
Acta Biomater.
,
11
, pp.
304
313
.
2.
Liu
,
Y.
,
Dang
,
C.
,
Garcia
,
M.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
,
2007
, “
Surrounding Tissues Affect the Passive Mechanics of the Vessel Wall: Theory and Experiment
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
6
), pp.
H3290
H3300
.
3.
Liu
,
Y.
,
Zhang
,
W.
, and
Kassab
,
G. S.
,
2008
, “
Effects of Myocardial Constraint on the Passive Mechanical Behaviors of the Coronary Vessel Wall
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
1
), pp.
H514
H523
.
4.
Steelman
,
S. M.
,
Wu
,
Q.
,
Wagner
,
H. P.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2010
, “
Perivascular Tethering Modulates the Geometry and Biomechanics of Cerebral Arterioles
,”
J. Biomech.
,
43
(
14
), pp.
2717
2721
.
5.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
6.
Humphrey
,
J. D.
,
Kang
,
T.
,
Sakarda
,
P.
, and
Anjanappa
,
M.
,
1993
, “
Computer-Aided Vascular Experimentation: A New Electromechanical Test System
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
33
43
.
7.
Wang
,
R.
,
Brewster
,
L. P.
, and
Gleason
,
R. L.
,
2013
, “
In Situ Characterization of the Uncrimping Process of Arterial Collagen Fibers Using Two-Photon Confocal Microscopy and Digital Image Correlation
,”
J. Biomech.
,
46
(
15
), pp.
2726
2729
.
8.
Wang
,
R.
,
Raykin
,
J.
,
Li
,
H.
,
Gleason
,
R. L.
, and
Brewster
,
L. P.
,
2014
, “
Differential Mechanical Response and Microstructural Organization Between Non-Human Primate Femoral and Carotid Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1041
1051
.
9.
Talman
,
A. H.
,
Psaltis
,
P. J.
,
Cameron
,
J. D.
,
Meredith
,
I. T.
,
Seneviratne
,
S. K.
, and
Wong
,
D. T. L.
,
2014
, “
Epicardial Adipose Tissue: Far More Than a Fat Depot
,”
Cardiovasc. Diagn. Ther.
,
4
(
6
), pp.
416
429
.
10.
Wasilewski
,
J.
,
Roleder
,
M.
,
Niedziela
,
J.
,
Nowakowski
,
A.
,
Osadnik
,
T.
,
Głowacki
,
J.
,
Mirota
,
K.
, and
Poloński
,
L.
,
2015
, “
The Role of Septal Perforators and “Myocardial Bridging Effect” in Atherosclerotic Plaque Distribution in the Coronary Artery Disease
,”
Pol. J. Radiol.
,
80
, pp.
195
201
.
11.
Bot
,
I.
,
de Jager
,
S. C. A.
,
Zernecke
,
A.
,
Lindstedt
,
K. A.
,
van Berkel
,
T. J. C.
,
Weber
,
C.
, and
Biessen
,
E. A. L.
,
2007
, “
Perivascular Mast Cells Promote Atherogenesis and Induce Plaque Destabilization in Apolipoprotein E-Deficient Mice
,”
Circulation
,
115
(
19
), pp.
2516
2525
.
12.
Robicsek
,
F.
, and
Thubrikar
,
M. J.
,
1994
, “
The Freedom From Atherosclerosis of Intramyocardial Coronary Arteries: Reduction of Mural Stress: A Key Factor
,”
Eur. J. Cardiothorac. Surg.
,
8
(
5
), pp.
228
235
.
13.
Scher
,
A. M.
,
2000
, “
Absence of Atherosclerosis in Human Intramyocardial Coronary Arteries: A Neglected Phenomenon
,”
Atherosclerosis
,
149
(
1
), pp.
1
3
.
14.
Verhagen
,
S. N.
, and
Visseren
,
F. L. J.
,
2011
, “
Perivascular Adipose Tissue as a Cause of Atherosclerosis
,”
Atherosclerosis
,
214
(
1
), pp.
3
10
.
15.
Wang
,
R.
, and
Gleason
,
R. L.
,
2010
, “
A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1377
1387
.
16.
Huo
,
Y.
,
Cheng
,
Y.
,
Zhao
,
X.
,
Lu
,
X.
, and
Kassab
,
G. S.
,
2012
, “
Biaxial Vasoactivity of Porcine Coronary Artery
,”
Am. J. Physiol. Heart Circ. Physiol.
,
302
(
10
), pp.
H2058
H2063
.
17.
Pandit
,
A.
,
Lu
,
X.
,
Wang
,
C.
, and
Kassab
,
G. S.
,
2005
, “
Biaxial Elastic Material Properties of Porcine Coronary Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
6
), pp.
H2581
H2587
.
18.
Zaucha
,
M. T.
,
Raykin
,
J.
,
Wan
,
W.
,
Gauvin
,
R.
,
Auger
,
F. A.
,
Germain
,
L.
,
Michaels
,
T. E.
, and
Gleason
,
R. L.
,
2009
, “
A Novel Cylindrical Biaxial Computer-Controlled Bioreactor and Biomechanical Testing Device for Vascular Tissue Engineering
,”
Tissue Eng. Part A
,
15
(
11
), pp.
3331
3340
.
19.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
20.
Weizsacker
,
H. W.
, and
Pinto
,
J. G.
,
1988
, “
Isotropy and Anisotropy of the Arterial Wall
,”
J. Biomech.
,
21
(
6
), pp.
477
487
.
21.
Wang
,
R.
,
Raykin
,
J.
,
Gleason
,
R. L.
, and
Ethier
,
C. R.
,
2015
, “
Residual Deformations in Ocular Tissues
,”
J. R. Soc. Interface
,
12
(
105
), p.
20141101
.
22.
Bellamy
,
R. F.
,
1978
, “
Diastolic Coronary Artery Pressure-Flow Relations in the Dog
,”
Circ. Res.
,
43
(
1
), pp.
92
101
.
23.
Chatterjee
,
T. K.
,
Aronow
,
B. J.
,
Tong
,
W. S.
,
Manka
,
D.
,
Tang
,
Y.
,
Bogdanov
,
V. Y.
,
Unruh
,
D.
,
Blomkalns
,
A. L.
,
Piegore
,
M. G.
,
Weintraub
,
D. S.
,
Rudich
,
S. M.
,
Kuhel
,
D. G.
,
Hui
,
D. Y.
, and
Weintraub
,
N. L.
,
2013
, “
Human Coronary Artery Perivascular Adipocytes Overexpress Genes Responsible for Regulating Vascular Morphology, Inflammation, and Hemostasis
,”
Physiol. Genomics
45
(
16
), pp.
697
709
.
24.
Mauro
,
C. R.
,
Ilonzo
,
G.
,
Nguyen
,
B. T.
,
Yu
,
P.
,
Tao
,
M.
,
Gao
,
I.
,
Seidman
,
M. A.
,
Nguyen
,
L. L.
, and
Ozaki
,
C. K.
,
2013
, “
Attenuated Adiposopathy in Perivascular Adipose Tissue Compared With Subcutaneous Human Adipose Tissue
,”
Am. J. Surg.
,
206
(
2
), pp.
241
244
.
25.
Rajsheker
,
S.
,
Manka
,
D.
,
Blomkalns
,
A. L.
,
Chatterjee
,
T. K.
,
Stoll
,
L. L.
, and
Weintraub
,
N. L.
,
2010
, “
Crosstalk Between Perivascular Adipose Tissue and Blood Vessels
,”
Curr. Opin. Pharmacol.
,
10
(
2
), pp.
191
196
.
26.
Bund
,
S. J.
,
Oldham
,
A. A.
, and
Heagerty
,
A. M.
,
1996
, “
Mechanical Properties of Porcine Small Coronary Arteries in One-Kidney, One-Clip Hypertension
,”
J. Vasc. Res.
,
33
(
2
), pp.
175
180
.
27.
Carmines
,
D. V.
,
McElhaney
,
J. H.
, and
Stack
,
R.
,
1991
, “
A Piece-Wise Non-Linear Elastic Stress Expression of Human and Pig Coronary Arteries Tested In Vitro
,”
J. Biomech.
,
24
(
10
), pp.
899
906
.
28.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
29.
Rogowska
,
J.
,
Patel
,
N. A.
,
Fujimoto
,
J. G.
, and
Brezinski
,
M. E.
,
2004
, “
Optical Coherence Tomographic Elastography Technique for Measuring Deformation and Strain of Atherosclerotic Tissues
,”
Heart
,
90
(
5
), pp.
556
562
.
You do not currently have access to this content.