An abdominal aortic aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta of at least 1.5 times its normal diameter. Although the criterion of maximum diameter is still used in clinical practice to decide on a timely intervention, numerical studies have demonstrated the importance of other geometric factors. However, the major drawback of numerical studies is that they must be validated experimentally before clinical implementation. This work presents a new methodology to verify wall stress predicted from the numerical studies against the experimental testing. To this end, four AAA phantoms were manufactured using vacuum casting. The geometry of each phantom was subject to microcomputed tomography (μCT) scanning at zero and three other intraluminal pressures: 80, 100, and 120 mm Hg. A zero-pressure geometry algorithm was used to calculate the wall stress in the phantom, while the numerical wall stress was calculated with a finite-element analysis (FEA) solver based on the actual zero-pressure geometry subjected to 80, 100, and 120 mm Hg intraluminal pressure loading. Results demonstrate the moderate accuracy of this methodology with small relative differences in the average wall stress (1.14%). Additionally, the contribution of geometric factors to the wall stress distribution was statistically analyzed for the four phantoms. The results showed a significant correlation between wall thickness and mean curvature (MC) with wall stress.

References

References
1.
Sakalihasan
,
N.
,
Limet
,
R.
, and
Defawe
,
O.
,
2005
, “
Abdominal Aortic Aneurysm
,”
Lancet
,
365
(
9470
), pp.
1577
1589
.
2.
Upchurch
,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Physician
,
73
(
7
), pp.
1198
1206
.http://www.aafp.org/afp/2006/0401/p1198.pdf
3.
Fillinger
,
M.
,
2007
, “
Who Should We Operate On and How Do We Decide: Predicting Rupture and Survival in Patients With Aortic Aneurysm
,”
Semin. Vasc. Surg.
,
20
(
2
), pp.
121
127
.
4.
Doyle
,
B. J.
,
Coyle
,
P.
,
Kavanagh
,
E. G.
,
Grace
,
P. A.
, and
Mcgloughlin
,
T. M.
,
2010
, “
A Finite Element Analysis Rupture Index (FEARI) Assessment of Electively Repaired and Symptomatic/Ruptured Abdominal Aortic Aneurysms
,”
IFMBE
Proceedings
, Singapore, Aug. 1–6, pp.
883
886
.
5.
Vande Geest
,
J. P.
,
Wang
,
D. H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1098
1106
.
6.
Kim
,
J.-H.
,
Avril
,
S.
,
Duprey
,
A.
, and
Favre
,
J.-P.
,
2012
, “
Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
841
853
.
7.
Duprey
,
A.
,
Khanafer
,
K.
,
Schlicht
,
M.
,
Avril
,
S.
,
Williams
,
D.
, and
Berguer
,
R.
,
2010
, “
In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing
,”
Eur. J. Vasc. Endovasc. Surg.
,
39
(
6
), pp.
700
707
.
8.
Raghavan
,
M. L.
,
Hanaoka
,
M. M.
,
Kratzberg
,
J. A.
,
Higuchi
,
M. D. L.
, and
da Silva
,
E. S.
,
2011
, “
Biomechanical Failure Properties and Microstructural Content of Ruptured and Unruptured Abdominal Aortic Aneurysms
,”
J. Biomech.
,
44
(
13
), pp.
2501
2507
.
9.
Finol
,
E. A.
,
Keyhani
,
K.
,
Amon
,
C. H.
, and
Raymond
,
J.
,
2003
, “
The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
207
217
.
10.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.
11.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
81010
.
12.
Martufi
,
G.
, and
Gasser
,
T. C.
,
2013
, “
Review: The Role of Biomechanical Modeling in the Rupture Risk Assessment for Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021010
.
13.
Rodriguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021023
.
14.
Riveros
,
N.
,
Martufi
,
G.
,
Gasser
,
T. C.
, and
Rodriguez-Matas
,
J. F.
,
2015
, “
On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2253
2264
.
15.
Antón
,
R.
,
Chen
,
C.
,
Hung
,
M.
,
Finol
,
E.
, and
Pekkan
,
K.
,
2015
, “
Experimental and Computational Investigation of the Patient-Specific Abdominal Aortic Aneurysm Pressure Field
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
9
), pp.
981
992
.
16.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.
17.
Speelman
,
L.
,
Bohra
,
A.
,
Bosboom
,
E. M. H.
,
Shurink
,
G. W. H.
,
van de Vosse
,
F. N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
129
(
1
), pp.
105
109
.
18.
Deplano
,
V.
,
Knapp
,
Y.
,
Bailly
,
L.
, and
Bertrand
,
E.
,
2014
, “
Flow of a Blood Analogue Fluid in a Compliant Abdominal Aortic Aneurysm Model: Experimental Modelling
,”
J. Biomech.
,
47
(
6
), pp.
1262
1269
.
19.
Doyle
,
B. J.
,
Cloonan
,
A. J.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2010
, “
Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques
,”
J. Biomech.
,
43
(
7
), pp.
1408
1416
.
20.
Doyle
,
B. J.
,
Killion
,
J.
, and
Callanan
,
A.
,
2012
, “
Use of the Photoelastic Method and Finite Element Analysis in the Assessment of Wall Strain in Abdominal Aortic Aneurysm Models
,”
J. Biomech.
,
45
(
10
), pp.
1759
1768
.
21.
Doyle
,
B. J.
,
McGloughlin
,
T. M.
,
Miller
,
K.
,
Powell
,
J. T.
, and
Norman
,
P. E.
,
2014
, “
Regions of High Wall Stress Can Predict the Future Location of Rupture of Abdominal Aortic Aneurysm
,”
Cardiovasc. Intervent. Radiol.
,
37
(
3
), pp.
815
818
.
22.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Fillinger
,
M. F.
,
2006
, “
Non-Invasive Determination of Zero-Pressure Geometry of Arterial Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
9
), pp.
1414
1419
.
23.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
24.
Shum
,
J.
,
Di Martino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.
25.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061015
.
26.
Sack
,
J. R.
, and
Urrutia
,
J.
, eds.,
2000
,
Handbook of Computational Geometry
,
Elsevier
,
Amsterdam, The Netherlands
.
27.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
(
1
), pp.
339
362
.
28.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
29.
Sussman
,
T.
, and
Bathe
,
K.-J.
,
1987
, “
A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis
,”
Comput. Struct.
,
26
(I), pp.
357
409
.
30.
Riveros
,
F.
,
Martufi
,
G.
,
Gasser
,
T. C.
, and
Rodriguez
,
J. F.
,
2014
, “
Influence of ILT Mechanical Behavior in Abdominal Aortic Aneurysms Passive Mechanics
,”
11th World Congress on Computational Mechanics
(
WCCM XI
), Barcelona, Spain, July 20–25, pp.
3
4
http://130.237.24.173/vascumech/files/FR_GM_TCG_JFR_WCCM2014.pdf.
31.
Riveros
,
F.
,
Chandra
,
S.
,
Finol
,
E. A.
,
Gasser
,
T. C.
, and
Rodriguez
,
J. F.
,
2013
, “
A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
41
(
4
), pp.
694
708
.
32.
Kroon
,
D. J.
,
2011
, “
Patch Curvature
,” Mathworks, Natick, MA, accessed May 13, 2016, http://www.mathworks.com/matlabcentral/fileexchange/32573-patch-curvature
33.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
34.
Hans
,
S. S.
,
Jareunpoon
,
O.
,
Balasubramaniam
,
M.
, and
Zelenock
,
G. B.
,
2005
, “
Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
41
(
4
), pp.
584
588
.
35.
Sakalihasan
,
N.
, and
Michel
,
J. B.
,
2009
, “
Functional Imaging of Atherosclerosis to Advance Vascular Biology
,”
Eur. J. Vasc. Endovasc. Surg.
,
37
(
6
), pp.
728
734
.
36.
O'Leary
,
S. A.
,
Mulvihill
,
J. J.
,
Barrett
,
H. E.
,
Kavanagh
,
E. G.
,
Walsh
,
M. T.
,
McGloughlin
,
T. M.
, and
Doyle
,
B. J.
,
2015
, “
Determining the Influence of Calcification on the Failure Properties of Abdominal Aortic Aneurysm (AAA) Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
42
, pp.
154
167
.
37.
Corbett
,
T. J.
,
Doyle
,
B. J.
,
Callanan
,
A.
,
Walsh
,
M. T.
, and
McGloughlin
,
T. M.
,
2011
, “
Engineering Silicone Rubbers for In Vitro Studies: Models and ILT Analogues With Physiological Properties
,”
ASME J. Biomech. Eng.
,
132
(
1
), pp.
1
25
.
38.
Xiong
,
J.
,
Guo
,
W.
,
Wang
,
J.
, and
Zhou
,
W.
,
2009
, “
Effects of Wall Thickness on Stress Distribution in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
2nd International Conference on Biomedical Engineering and Informatics
(
BMEI '09
), Tianjin, China, Oct. 17–19 pp.
9
11
.
39.
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
40.
Scotti
,
C. M.
,
Jimenez
,
J. J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2008
, “
Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid-Structure Interaction
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
3
), pp.
301
322
.
41.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
,
2005
, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Distributions in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1185
1194
.
42.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
,
2006
, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,”
Biomed. Eng. Online
,
5
, p.
33
.
43.
Li
,
Z. Y.
,
U-King-Im
,
J.
,
Tang
,
T. Y.
,
Soh
,
E.
,
See
,
T. C.
, and
Gillard
,
J. H.
,
2008
, “
Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
47
(
5
), pp.
928
935
.
44.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2014
, “
The Effect of Uncertainty in Vascular Wall Material Properties on Abdominal Aortic Aneurysm Wall Mechanics
,”
Computational Biomechanics for Medicine, Fundamental Science and Patient-Specific Applications
,
Springer
,
New York
, pp.
69
86
.
45.
Kwon
,
T. S.
,
Burek
,
W.
,
Dupay
,
A. C.
,
Farsad
,
M.
,
Baek
,
S.
,
Park
,
E.-A.
, and
Lee
,
W.
,
2015
, “
Interaction of Expanding Abdominal Aortic Aneurysm With Surrounding Tissue: Retrospective CT Image Studies
,”
J. Nat. Sci.
,
1
(
8
), p.
e150
.http://europepmc.org/articles/PMC4666317
46.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2007
, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
(
3
), pp.
693
696
.
47.
Alastrué
,
V.
,
Peña
,
E.
,
Martínez
,
M. Á.
, and
Doblaré
,
M.
,
2007
, “
Assessing the Use of the ‘Opening Angle Method’ to Enforce Residual Stresses in Specific Arteries
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1821
1837
.
48.
Rachev
,
A.
, and
Greenwald
,
S. E.
,
2003
, “
Residual Strains in Conduit Arteries
,”
J. Biomech.
,
36
(
5
), pp.
661
670
.
You do not currently have access to this content.