This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a nonlinear Kelvin–Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin–Voigt model and the experimental measurements. We found that the viscoelastic relaxation time—defined by the ratio between the viscoelastic coefficient and the Young's modulus—is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high-frequency waves is clear especially at the peripheral sites.

References

References
1.
Wang
,
X.
,
Nishi
,
S.
,
Matsukawa
,
M.
,
Ghigo
,
A.
,
Lagrée
,
P.-Y.
, and
Fullana
,
J.-M.
,
2016
, “
Fluid Friction and Wall Viscosity of the 1D Blood Flow Model
,”
J. Biomech.
,
49
(
4
), pp.
565
571
.
2.
Fung
,
Y.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
3.
Steele
,
B.
,
Valdez-Jasso
,
D.
,
Haider
,
M.
, and
Olufsen
,
M.
,
2011
, “
Predicting Arterial Flow and Pressure Dynamics Using a 1D Fluid Dynamics Model With a Viscoelastic Wall
,”
SIAM J. Appl. Math.
,
71
(
4
), pp.
1123
1143
.
4.
Holenstein
,
R.
,
Niederer
,
P.
, and
Anliker
,
M.
,
1980
, “
A Viscoelastic Model for Use in Predicting Arterial Pulse Waves
,”
ASME J. Biomech. Eng.
,
102
(
4
), pp.
318
325
.
5.
Reymond
,
P.
,
Bohraus
,
Y.
,
Perren
,
F.
,
Lazeyras
,
F.
, and
Stergiopulos
,
N.
,
2011
, “
Validation of a Patient-Specific One-Dimensional Model of the Systemic Arterial Tree
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
301
(
3
), pp.
H1173
H1182
.
6.
Reymond
,
P.
,
Merenda
,
F.
,
Perren
,
F.
,
Rüfenacht
,
D.
, and
Stergiopulos
,
N.
,
2009
, “
Validation of a One-Dimensional Model of the Systemic Arterial Tree
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
297
(
1
), pp.
H208
H222
.
7.
Raghu
,
R.
,
Vignon-Clementel
,
I.
,
Figueroa
,
C.
, and
Taylor
,
C.
,
2011
, “
Comparative Study of Viscoelastic Arterial Wall Models in Nonlinear One-Dimensional Finite Element Simulations of Blood Flow
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081003
.
8.
Segers
,
P.
,
Stergiopulos
,
N.
,
Verdonck
,
P.
, and
Verhoeven
,
R.
,
1997
, “
Assessment of Distributed Arterial Network Models
,”
Med. Biol. Eng. Comput.
,
35
(
6
), pp.
729
736
.
9.
Armentano
,
R.
,
Barra
,
J.
,
Levenson
,
J.
,
Simon
,
A.
, and
Pichel
,
R.
,
1995
, “
Arterial Wall Mechanics in Conscious Dogs Assessment of Viscous, Inertial, and Elastic Moduli to Characterize Aortic Wall Behavior
,”
Circ. Res.
,
76
(
3
), pp.
468
478
.
10.
Alastruey
,
J.
,
Khir
,
A. W.
,
Matthys
,
K. S.
,
Segers
,
P.
,
Sherwin
,
S. J.
,
Verdonck
,
P. R.
,
Parker
,
K. H.
, and
Peiró
,
J.
,
2011
, “
Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Visco-Elastic Simulations Against In Vitro Measurements
,”
J. Biomech.
,
44
(
12
), pp.
2250
2258
.
11.
Valdez-Jasso
,
D.
,
Haider
,
M.
,
Banks
,
H.
,
Santana
,
D.
,
Germán
,
Y.
,
Armentano
,
R.
, and
Olufsen
,
M.
,
2009
, “
Analysis of Viscoelastic Wall Properties in Ovine Arteries
,”
IEEE Trans. Biomed. Eng.
,
56
(
2
), pp.
210
219
.
12.
Erbay
,
H.
,
Erbay
,
S.
, and
Dost
,
S.
,
1992
, “
Wave Propagation in Fluid Filled Nonlinear Viscoelastic Tubes
,”
Acta Mech.
,
95
(
1–4
), pp.
87
102
.
13.
Bird
,
R. B.
,
Armstrong
,
R. C.
,
Hassager
,
O.
, and
Curtiss
,
C. F.
,
1977
,
Dynamics of Polymeric Liquids
, Vol.
1
,
Wiley
,
New York
.
14.
Fischer
,
E. C.
,
Bia
,
D.
,
Camus
,
J.
,
Zócalo
,
Y.
,
De Forteza
,
E.
, and
Armentano
,
R.
,
2006
, “
Adventitia-Dependent Mechanical Properties of Brachiocephalic Ovine Arteries in In Vivo and In Vitro Studies
,”
Acta Physiol.
,
188
(
2
), pp.
103
111
.
15.
Fung
,
Y.
,
1997
,
Biomechanics: Circulation
,
Springer Verlag
,
New York
.
16.
Smith
,
N.
,
Pullan
,
A.
, and
Hunter
,
P.
,
2002
, “
An Anatomically Based Model of Transient Coronary Blood Flow in the Heart
,”
SIAM J. Appl. Math.
,
62
(
3
), pp.
990
1018
.
17.
Wang
,
X.
,
Delestre
,
O.
,
Fullana
,
J.-M.
,
Saito
,
M.
,
Ikenaga
,
Y.
,
Matsukawa
,
M.
, and
Lagrée
,
P.-Y.
,
2012
, “
Comparing Different Numerical Methods for Solving Arterial 1D Flows in Networks
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
Suppl. 1
), pp.
61
62
.
18.
Wang
,
X.
,
Fullana
,
J.-M.
, and
Lagrée
,
P.-Y.
,
2015
, “
Verification and Comparison of Four Numerical Schemes for a 1D Viscoelastic Blood Flow Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
15
), pp.
1704
1725
.
19.
Bessems
,
D.
,
Giannopapa
,
C.
,
Rutten
,
M.
, and
van de Vosse
,
F.
,
2008
, “
Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels
,”
J. Biomech.
,
41
(
2
), pp.
284
291
.
20.
Valdez-Jasso
,
D.
,
Bia
,
D.
,
Zócalo
,
Y.
,
Armentano
,
R.
,
Haider
,
M.
, and
Olufsen
,
M.
,
2011
, “
Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure–Area Dynamics Under In Vivo and Ex Vivo Conditions
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1438
1456
.
21.
Nichols
,
W.
,
O'Rourke
,
M.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.