An existing axisymmetric fluid/structure-interaction (FSI) model of the spinal cord, pia mater, subarachnoid space, and dura mater in the presence of syringomyelia and subarachnoid-space stenosis was modified to include porous solids. This allowed investigation of a hypothesis for syrinx fluid ingress from cerebrospinal fluid (CSF). Gross model deformation was unchanged by the addition of porosity, but pressure oscillated more in the syrinx and the subarachnoid space below the stenosis. The poroelastic model still exhibited elevated mean pressure in the subarachnoid space below the stenosis and in the syrinx. With realistic cord permeability, there was slight oscillatory shunt flow bypassing the stenosis via the porous tissue over the syrinx. Weak steady streaming flow occurred in a circuit involving craniocaudal flow through the stenosis and back via the syrinx. Mean syrinx volume was scarcely altered when the adjacent stenosis bisected the syrinx, but increased slightly when the syrinx was predominantly located caudal to the stenosis. The fluid content of the tissues over the syrinx oscillated, absorbing most of the radial flow seeping from the subarachnoid space so that it did not reach the syrinx. To a lesser extent, this cyclic swelling in a boundary layer of cord tissue just below the pia occurred all along the cord, representing a mechanism for exchange of interstitial fluid (ISF) and cerebrospinal fluid which could explain recent tracer findings without invoking perivascular conduits. The model demonstrates that syrinx volume increase is possible when there is subarachnoid-space stenosis and the cord and pia are permeable.

References

References
1.
Levine
,
D. N.
,
2004
, “
The Pathogenesis of Syringomyelia Associated With Lesions at the Foramen Magnum: A Critical Review of Existing Theories and Proposal of a New Hypothesis
,”
J. Neurol. Sci.
,
220
, pp.
3
21
.
2.
Elliott
,
N. S. J.
,
Bertram
,
C. D.
,
Martin
,
B. A.
, and
Brodbelt
,
A.
,
2013
, “
Syringomyelia: A Review of the Biomechanics
,”
J. Fluids Struct.
,
40
, pp.
1
24
.
3.
Bertram
,
C. D.
,
2010
, “
Evaluation by Fluid/Structure-Interaction Spinal-Cord Simulation of the Effects of Subarachnoid-Space Stenosis on an Adjacent Syrinx
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061009
.
4.
Bertram
,
C. D.
,
2009
, “
A Numerical Investigation of Waves Propagating in the Spinal Cord and Subarachnoid Space in the Presence of a Syrinx
,”
J. Fluids Struct.
,
25
(
7
), pp.
1189
1205
.
5.
Brugières
,
P.
,
Idy-Peretti
,
I.
,
Iffenecker
,
C.
,
Parker
,
F.
,
Jolivet
,
O.
,
Hurth
,
M.
,
Gaston
,
A.
, and
Bittoun
,
J.
,
2000
, “
CSF Flow Measurement in Syringomyelia
,”
Am. J. Neuroradiol.
,
21
(
10
), pp.
1785
1792
.http://www.ajnr.org/content/21/10/1785.short
6.
Williams
,
B.
,
1980
, “
On the Pathogenesis of Syringomyelia: A Review
,”
J. R. Soc. Med.
,
73
(
11
), pp.
798
806
.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1437943/
7.
Martin
,
B. A.
,
Labuda
,
R.
,
Royston
,
T. J.
,
Oshinski
,
J. N.
,
Iskandar
,
B.
, and
Loth
,
F.
,
2010
, “
Spinal Canal Pressure Measurements in an In Vitro Spinal Stenosis Model: Implications on Syringomyelia Theories
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111007
.
8.
Heil
,
M.
, and
Bertram
,
C. D.
, “
A Poroelastic Fluid-Structure Interaction Model of Syringomyelia
,”
J. Fluid Mech.
(in press).
9.
Bertram
,
C. D.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
,
2005
, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1099
1109
.
10.
Simon
,
B. R.
,
1992
, “
Multiphase Poroelastic Finite Element Models for Soft Tissue Structures
,”
ASME Appl. Mech. Rev.
,
45
(
6
), pp.
191
218
.
11.
Jäger
,
W.
, and
Mikelić
,
A.
,
2000
, “
On the Interface Boundary Condition of Beavers, Joseph, and Saffman
,”
SIAM J. Appl. Math.
,
60
(
4
), pp.
1111
1127
.
12.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2004
, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg. (Spine)
,
1
(
1
), pp.
122
127
.
13.
Bertram
,
C. D.
,
2012
, “
Benchmarking of Fluid/Structure Interaction Models of Wave Propagation (Poster)
,”
ECI Conference on Computational Fluid Dynamics in Medicine and Biology, and Seventh International Biofluid Mechanics Symposium
, Ein Bokek, Dead Sea, Israel, Mar. 25–30.
14.
Smillie
,
A.
,
Sobey
,
I.
, and
Molnar
,
Z.
,
2005
, “
A Hydroelastic Model of Hydrocephalus
,”
J. Fluid Mech.
,
539
, pp.
417
443
.
15.
Cloyd
,
M. W.
, and
Low
,
F. N.
,
1974
, “
Scanning Electron Microscopy of the Subarachnoid Space in the Dog. I. Spinal Cord Levels
,”
J. Comp. Neurol.
,
153
(
4
), pp.
325
367
.
16.
Heil
,
M.
, and
Hazel
,
A. L.
,
2006
, “
oomph-lib—An Object-Oriented Multi-Physics Finite-Element Library
,”
Fluid-Structure Interaction
(Lecture Notes on Computational Science and Engineering),
M.
Schafer
, and
H.-J.
Bungartz
, eds.,
Springer-Verlag
, Berlin, pp.
19
49
.
17.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
,
1993
, “
Fundamentals of Poroelasticity
,”
Comprehensive Rock Engineering: Principles, Practice and Projects
(Analysis and Design Method, Vol. II),
C.
Fairhurst
, ed.,
Pergamon Press
, Oxford, UK, pp.
113
171
.
18.
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
,
2003
, “
Post-Traumatic Syringomyelia: A Review
,”
J. Clin. Neurosci.
,
10
(
4
), pp.
401
408
.
19.
Klekamp
,
J.
,
2009
, “
Syringomyelia
,”
Practical Handbook of Neurosurgery—From Leading Neurosurgeons
, M. Sindou, ed., Springer-Verlag, Wien, Germany, Vol. 3, pp.
145
161
.
20.
Samii
,
M.
, and
Klekamp
,
J.
,
1994
, “
Surgical Results of 100 Intramedullary Tumors in Relation to Accompanying Syringomyelia
,”
Neurosurgery
,
35
(
5
), pp.
865
873
.
21.
Oldfield
,
E. H.
,
Muraszko
,
K.
,
Shawker
,
T. H.
, and
Patronas
,
N. J.
,
1994
, “
Pathophysiology of Syringomyelia Associated With Chiari I Malformation of the Cerebellar Tonsils
,”
J. Neurosurg.
,
80
(
1
), pp.
3
15
.
22.
Davis
,
C. H. G.
, and
Symon
,
L.
,
1989
, “
Mechanisms and Treatment in Post-Traumatic Syringomyelia
,”
Br. J. Neurosurg.
,
3
(
6
), pp.
669
674
.
23.
Ellertsson
,
A. B.
, and
Greitz
,
T.
,
1970
, “
The Distending Force in the Production of Communicating Syringomyelia
,”
Lancet
,
295
(
7658
), p.
1234
.
24.
Hall
,
P.
,
Turner
,
M.
,
Aichinger
,
S.
,
Bendick
,
P.
, and
Campbell
,
R.
,
1980
, “
Experimental Syringomyelia: The Relationship Between Intraventricular and Intrasyrinx Pressures
,”
J. Neurosurg.
,
52
(
6
), pp.
812
817
.
25.
Milhorat
,
T. H.
,
Capocelli
,
A. L.
,
Kotzen
,
R. M.
,
Bolognese
,
P.
,
Heger
, I
. M.
, and
Cottrell
,
J. E.
,
1997
, “
Intramedullary Pressure in Syringomyelia: Clinical and Pathophysiological Correlates of Syrinx Distension
,”
Neurosurgery
,
41
(
5
), pp.
1102
1110
.
26.
Bilston
,
L. E.
,
Stoodley
,
M. A.
, and
Fletcher
,
D. F.
,
2010
, “
The Influence of the Relative Timing of Arterial and Subarachnoid Space Pulse Waves on Spinal Perivascular Cerebrospinal Fluid Flow as a Possible Factor in Syrinx Developments
,”
J. Neurosurg.
,
112
(
4
), pp.
808
813
.
27.
Sansur
,
C. A.
,
Heiss
,
J. D.
,
DeVroom
,
H. L.
,
Eskioglu
,
E.
,
Ennis
,
R.
, and
Oldfield
,
E. H.
,
2003
, “
Pathophysiology of Headache Associated With Cough in Patients With Chiari I Malformation
,”
J. Neurosurg.
,
98
(
3
), pp.
453
458
.
28.
Williams
,
B.
,
1976
, “
Cerebrospinal Fluid Pressure Changes in Response to Coughing
,”
Brain
,
99
(
2
), pp.
331
346
.
29.
Klekamp
,
J.
,
2002
, “
The Pathophysiology of Syringomyelia—Historical Overview and Current Concept
,”
Acta Neurochir.
,
144
(
7
), pp.
649
664
.
30.
Iliff
,
J. J.
,
Lee
,
H.
,
Yu
,
M.
,
Feng
,
T.
,
Logan
,
J.
,
Nedergaard
,
M.
, and
Benveniste
,
H.
,
2013
, “
Brain-Wide Pathway for Waste Clearance Captured by Contrast-Enhanced MRI
,”
J. Clin. Invest.
,
123
(
3
), pp.
1299
1309
.
31.
Iliff
,
J. J.
,
Wang
,
M.
,
Zeppenfeld
,
D. M.
,
Venkataraman
,
A.
,
Plog
,
B. A.
,
Liao
,
Y.
,
Deane
,
R.
, and
Nedergaard
,
M.
,
2013
, “
Cerebral Arterial Pulsation Drives Paravascular CSF–Interstitial Fluid Exchange in the Murine Brain
,”
J. Neurosci.
,
33
(
46
), pp.
18190
18199
.
32.
Carare
,
R. O.
,
Bernardes-Silva
,
M.
,
Newman
,
T. A.
,
Page
,
A. M.
,
Nicoll
,
J. A. R.
,
Perry
, V
. H.
, and
Weller
,
R. O.
,
2008
, “
Solutes, but Not Cells, Drain From the Brain Parenchyma Along Basement Membranes of Capillaries and Arteries: Significance for Cerebral Amyloid Angiopathy and Neuroimmunology
,”
Neuropathol. Appl. Neurobiol.
,
34
(
2
), pp.
131
144
.
33.
Rossi
,
C.
,
Boss
,
A.
,
Steidle
,
G.
,
Martirosian
,
P.
,
Klose
,
U.
,
Capuani
,
S.
,
Maraviglia
,
B.
,
Claussen
,
C. D.
, and
Schick
,
F.
,
2008
, “
Water Diffusion Anisotropy in White and Gray Matter of the Human Spinal Cord
,”
J. Magn. Reson. Imaging
,
27
(
3
), pp.
476
482
.
You do not currently have access to this content.