The effects of formalin fixation on bone material properties remain debatable. In this study, we collected 36 fresh-frozen cuboid-shaped cortical specimens from five male bovine femurs and immersed half of the specimens into 4% formalin fixation liquid for 30 days. We then conducted three-point bending tests and used both beam theory method and an optimization method combined with specimen-specific finite element (FE) models to identify material parameters. Through the optimization FE method, the formalin-fixed bones showed a significantly lower Young's modulus (−12%) compared to the fresh-frozen specimens, while no difference was observed using the beam theory method. Meanwhile, both the optimization FE and beam theory methods revealed higher effective failure strains for formalin-fixed bones compared to fresh-frozen ones (52% higher through the optimization FE method and 84% higher through the beam theory method). Hence, we conclude that the formalin fixation has a significant effect on bovine cortical bones at small, elastic, as well as large, plastic deformations.

References

References
1.
Sedlin
,
E. D.
, and
Hirsch
,
C.
,
1966
, “
Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone
,”
Acta Orthop. Scand.
,
37
(
1
), pp.
29
48
.
2.
Linde
,
F.
, and
Sorensen
,
H. C. F.
,
1993
, “
The Effect of Different Storage Methods on the Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
26
(
10
), pp.
1249
1252
.
3.
Demiryurek
,
D.
,
Bayramoglu
,
A.
, and
Ustacelebi
,
S.
,
2002
, “
Infective Agents in Fixed Human Cadavers: A Brief Review and Suggested Guidelines
,”
Anat. Rec.
,
269
(
4
), pp.
194
197
.
4.
Healing
,
T.
,
Hoffman
,
P.
, and
Young
,
S.
,
1995
, “
The Infection Hazards of Human Cadavers
,”
Commun. Dis. Rep. CDR Rev.
,
5
(
5
), pp.
R61
68
.
5.
Topp
,
T.
,
Muller
,
T.
,
Huss
,
S.
,
Kann
,
P. H.
,
Weihe
,
E.
,
Ruchholtz
,
S.
, and
Zettl
,
R. P.
,
2012
, “
Embalmed and Fresh Frozen Human Bones in Orthopedic Cadaveric Studies: Which Bone is Authentic and Feasible?
,”
Acta Orthop.
,
83
(
5
), pp.
543
547
.
6.
Burkhart
,
K. J.
,
Nowak
,
T. E.
,
Blum
,
J.
,
Kuhn
,
S.
,
Welker
,
M.
,
Sternstein
,
W.
,
Mueller
,
L. P.
, and
Rommens
,
P. M.
,
2010
, “
Influence of Formalin Fixation on the Biomechanical Properties of Human Diaphyseal Bone
,”
Biomed. Tech./Biomed. Eng.
,
55
(
6
), pp.
361
365
.
7.
Icke
,
C.
, and
Koebke
,
J.
,
2014
, “
Normal Stress Pattern of the Pubic Symphysis
,”
Anat. Cell Biol.
,
47
(
1
), pp.
40
43
.
8.
Kitson
,
J.
,
Booth
,
G.
, and
Day
,
R.
,
2007
, “
A Biomechanical Comparison of Locking Plate and Locking Nail Implants Used for Fractures of the Proximal Humerus
,”
J. Shoulder Elbow Surg.
,
16
(
3
), pp.
362
366
.
9.
Cummins
,
F.
,
Kelly
,
D.
, and
Kenny
,
P.
,
2012
, “
Defining the Impaction Frequency and Threshold Force Required for Femoral Impaction Grafting in Revision Hip Arthroplasty-A Human Cadaveric Biomechanical Study
,”
J. Bone Jt. Surg., Br.
94
(
Suppl. XXXIX
), pp.
210
210
.
10.
Goh
,
J. C.
,
Ang
,
E. J.
, and
Bose
,
K.
,
1989
, “
Effect of Preservation Medium on the Mechanical Properties of Cat Bones
,”
Acta Orthop. Scand.
,
60
(
4
), pp.
465
467
.
11.
Morita
,
K.
,
Doi
,
K.
,
Oue
,
H.
,
Kajihara
,
S.
,
Hayashi
,
K.
, and
Akagawa
,
Y.
,
2013
, “
Influence of Formalin Fixation on the Implant Stability Quotient and Mechanical Characteristics of Bone
,”
Br. J. Oral Maxillofac. Surg.
,
51
(
6
), pp.
550
554
.
12.
Van Haaren
,
E. H.
,
van der Zwaard
,
B. C.
,
van der Veen
,
A. J.
,
Heyligers
,
I. C.
,
Wuisman
,
P. I.
, and
Smit
,
T. H.
,
2008
, “
Effect of Long-Term Preservation on the Mechanical Properties of Cortical Bone in Goats
,”
Acta Orthop.
,
79
(
5
), pp.
708
716
.
13.
Liebschner
,
M. A. K.
,
2004
, “
Biomechanical Considerations of Animal Models Used in Tissue Engineering of Bone
,”
Biomaterials
,
25
(
9
), pp.
1697
1714
.
14.
McElhaney
,
J.
,
Fogle
,
J.
,
Byars
,
E.
, and
Weaver
,
G.
,
1964
, “
Effect of Embalming on the Mechanical Properties of Beef Bone
,”
J. Appl. Physiol.
,
19
(
6
), pp.
1234
1236
.
15.
Ohman
,
C.
,
Dall'Ara
,
E.
,
Baleani
,
M.
,
Van Sint Jan
,
S.
, and
Viceconti
,
M.
,
2008
, “
The Effects of Embalming Using a 4% Formalin Solution on the Compressive Mechanical Properties of Human Cortical Bone
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
10
), pp.
1294
1298
.
16.
Unger
,
S.
,
Blauth
,
M.
, and
Schmoelz
,
W.
,
2010
, “
Effects of Three Different Preservation Methods on the Mechanical Properties of Human and Bovine Cortical Bone
,”
Bone
,
47
(
6
), pp.
1048
1053
.
17.
Martin
,
R.
, and
Sharkey
,
N.
,
2001
, “
Mechanical Effects of Post-Mortem Changes, Preservation, and Allograft Bone Treatments
,”
Bone Mechanics Handbook
, Vol.
2
, CRC Press, Boca Raton, FL, pp.
20.21
20.24
.
18.
Albert
,
C. I.
,
Jameson
,
J.
, and
Harris
,
G.
,
2012
, “
Design and Validation of Bending Test Method for Characterization of Miniature Pediatric Cortical Bone Specimens
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
2
), pp.
105
113
.
19.
Cuppone
,
M.
,
Seedhom
,
B.
,
Berry
,
E.
, and
Ostell
,
A.
,
2004
, “
The Longitudinal Young's Modulus of Cortical Bone in the Midshaft of Human Femur and Its Correlation With CT Scanning Data
,”
Calcif. Tissue Int.
,
74
(
3
), pp.
302
309
.
20.
Van Lenthe
,
G. H.
,
Voide
,
R.
,
Boyd
,
S. K.
, and
Müller
,
R.
,
2008
, “
Tissue Modulus Calculated From Beam Theory is Biased by Bone Size and Geometry: Implications for the Use of Three-Point Bending Tests to Determine Bone Tissue Modulus
,”
Bone
,
43
(
4
), pp.
717
723
.
21.
Untaroiu
,
C.
,
Kerrigan
,
J.
, and
Crandall
,
J.
,
2006
, “
Material Identification Using Successive Response Surface Methodology, With Application to a Human Femur Subjected to Three-Point Bending Loading
,”
SAE
Paper No. 2006-01-0063.
22.
Chawla
,
A.
,
Mukherjee
,
S.
, and
Karthikeyan
,
B.
,
2009
, “
Characterization of Human Passive Muscles for Impact Loads Using Genetic Algorithm and Inverse Finite Element Methods
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
67
76
.
23.
Huang
,
H. L.
,
Tsai
,
M. T.
,
Lin
,
D. J.
,
Chien
,
C. S.
, and
Hsu
,
J. T.
,
2010
, “
A New Method to Evaluate the Elastic Modulus of Cortical Bone by Using a Combined Computed Tomography and Finite Element Approach
,”
Comput. Biol. Med.
,
40
(
4
), pp.
464
468
.
24.
Guan
,
F.
,
Han
,
X.
,
Mao
,
H.
,
Wagner
,
C.
,
Yeni
,
Y. N.
, and
Yang
,
K. H.
,
2011
, “
Application of Optimization Methodology and Specimen-Specific Finite Element Models for Investigating Material Properties of Rat Skull
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
85
95
.
25.
Hu
,
J.
,
Klinich
,
K. D.
,
Miller
,
C. S.
,
Nazmi
,
G.
,
Pearlman
,
M. D.
,
Schneider
,
L. W.
, and
Rupp
,
J. D.
,
2009
, “
Quantifying Dynamic Mechanical Properties of Human Placenta Tissue Using Optimization Techniques With Specimen-Specific Finite-Element Models
,”
J. Biomech.
,
42
(
15
), pp.
2528
2534
.
26.
Wieding
,
J.
,
Mick
,
E.
,
Wree
,
A.
, and
Bader
,
R.
,
2015
, “
Influence of Three Different Preservative Techniques on the Mechanical Properties of the Ovine Cortical Bone
,”
Acta Bioeng. Biomech.
,
17
(
1
), pp.
137
146
.
27.
Hallquist
,
J. O.
,
2006
, “
LS-DYNA Theory Manual
,” Livermore Software Technology Corporation, Livermore, CA.
28.
Zhang
,
J.
, and
Yang
,
K. H.
,
1992
, “
A Finite Element Modeling of Anterior Lumbar Spinal Fusion
,” Trans. 39th Ann. Meeting, Orthop. Res. Soc., p. 66.
29.
Krone
,
R.
, and
Schuster
,
P.
,
2006
, “
An Investigation on the Importance of Material Anisotropy in Finite-Element Modeling of the Human Femur
,”
SAE
Technical Paper No. 2006-01-0064.
30.
Yamato
,
Y.
,
Matsukawa
,
M.
,
Otani
,
T.
,
Yamazaki
,
K.
, and
Nagano
,
A.
,
2006
, “
Distribution of Longitudinal Wave Properties in Bovine Cortical Bone in vitro
,”
Ultrasonics
,
44
(
Suppl. 1
), pp.
e233
e237
.
31.
Pithioux
,
M.
,
Lasaygues
,
P.
, and
Chabrand
,
P.
,
2002
, “
An Alternative Ultrasonic Method for Measuring the Elastic Properties of Cortical Bone
,”
J. Biomech.
,
35
(
7
), pp.
961
968
.
32.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
33.
Mao
,
H.
,
Wagner
,
C.
,
Guan
,
F.
,
Yeni
,
Y. N.
, and
Yang
,
K. H.
,
2011
, “
Material Properties of Adult Rat Skull
,”
J. Mech. Med. Biol.
,
11
(05), pp.
1199
1212
.
34.
Currey
,
J. D.
,
Brear
,
K.
,
Zioupos
,
P.
, and
Reilly
,
G. C.
,
1995
, “
Effect of Formaldehyde Fixation on Some Mechanical Properties of Bovine Bone
,”
Biomaterials
,
16
(
16
), pp.
1267
1271
.
35.
Moreno
,
J.
, and
Forriol
,
F.
,
2002
, “
Effects of Preservation on the Mechanical Strength and Chemical Composition of Cortical Bone: An Experimental Study in Sheep Femora
,”
Biomaterials
,
23
(
12
), pp.
2615
2619
.
36.
Asaka
,
T.
, and
Kikugawa
,
H.
,
2007
, “
Influence of Preservation in Two Kinds of Formaldehyde Solutions on the Fracture Characteristics of Bovine Femoral Compact Bones
,”
Mater. Trans.
,
48
(
1
), pp.
16
20
.
37.
Hammer
,
N.
,
Voigt
,
C.
,
Werner
,
M.
,
Hoffmann
,
F.
,
Bente
,
K.
,
Kunze
,
H.
,
Scholz
,
R.
, and
Steinke
,
H.
,
2014
, “
Ethanol and Formaldehyde Fixation Irreversibly Alter Bones' Organic Matrix
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
252
258
.
38.
Boskey
,
A.
,
Cohen
,
M.
, and
Bullough
,
P.
,
1982
, “
Hard Tissue Biochemistry: A Comparison of Fresh-Frozen and Formalin-Fixed Tissue Samples
,”
Calcif. Tissue Int.
,
34
(
1
), pp.
328
331
.
You do not currently have access to this content.