We present processing methods and visualization techniques for accurately characterizing and interpreting kinematical data of flexion–extension motion of the knee joint based on helical axes. We make use of the Lie group of rigid body motions and particularly its Lie algebra for a natural representation of motion sequences. This allows to analyze and compute the finite helical axis (FHA) and instantaneous helical axis (IHA) in a unified way without redundant degrees of freedom or singularities. A polynomial fitting based on Legendre polynomials within the Lie algebra is applied to provide a smooth description of a given discrete knee motion sequence which is essential for obtaining stable instantaneous helical axes for further analysis. Moreover, this allows for an efficient overall similarity comparison across several motion sequences in order to differentiate among several cases. Our approach combines a specifically designed patient-specific three-dimensional visualization basing on the processed helical axes information and incorporating computed tomography (CT) scans for an intuitive interpretation of the axes and their geometrical relation with respect to the knee joint anatomy. In addition, in the context of the study of diseases affecting the musculoskeletal articulation, we propose to integrate the above tools into a multiscale framework for exploring related data sets distributed across multiple spatial scales. We demonstrate the utility of our methods, exemplarily processing a collection of motion sequences acquired from experimental data involving several surgery techniques. Our approach enables an accurate analysis, visualization and comparison of knee joint articulation, contributing to the evaluation and diagnosis in medical applications.

References

References
1.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.
2.
Chasles
,
M.
,
1830
, “
Note sur les propriétés générales du système de deux corps semblables entr'eux et placés d'une manière quelconque dans l'espace; et sur le déplacement fini ou infiniment petit d'un corps solide libre
,”
Bull. Sci. Math., Férussac
,
14
, pp.
321
326
.
3.
Woltring
,
H.
,
De Lange
,
A.
,
Kauer
,
J.
, and
Huiskes
,
R.
,
1987
, “
Instantaneous Helical Axis Estimation via Natural, Cross-Validated Splines
,”
Biomechanics: Basic and Applied Research
,
Springer
,
Berlin
, pp.
121
128
.
4.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
Lange
,
A. D.
,
1990
, “
Helical Axes of Passive Knee Joint Motions
,”
J. Biomech.
,
23
(
12
), pp.
1219
1229
.
5.
Woltring
,
H.
,
Huiskes
,
R.
,
De Lange
,
A.
, and
Veldpaus
,
F.
,
1985
, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
,
18
(
5
), pp.
379
389
.
6.
Metzger
,
M.
,
Faruk Senan
,
N.
,
O'Reilly
,
O.
, and
Lotz
,
J.
,
2010
, “
Minimizing Errors Associated With Calculating the Location of the Helical Axis for Spinal Motions
,”
J. Biomech.
,
43
(
14
), pp.
2822
2829
.
7.
Hart
,
R.
,
Mote
,
C.
, and
Skinner
,
H.
,
1991
, “
A Finite Helical Axis as a Landmark for Kinematic Reference of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
2
), pp.
215
222
.
8.
Manal
,
K.
,
McClay
,
I.
,
Stanhope
,
S.
,
Richards
,
J.
, and
Galinat
,
B.
,
2000
, “
Comparison of Surface Mounted Markers and Attachment Methods in Estimating Tibial Rotations During Walking: An In Vivo Study
,”
Gait Posture
,
11
(
1
), pp.
38
45
.
9.
van den Bogert
,
A. J.
,
Reinschmidt
,
C.
, and
Lundberg
,
A.
,
2008
, “
Helical Axes of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
41
(
8
), pp.
1632
1638
.
10.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
11.
Wu
,
W.-L.
,
Su
,
F.-C.
,
Cheng
,
Y.-M.
,
Huang
,
P.-J.
,
Chou
,
Y.-L.
, and
Chou
,
C.-K.
,
2000
, “
Gait Analysis After Ankle Arthrodesis
,”
Gait Posture
,
11
(
1
), pp.
54
61
.
12.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
,
2003
, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
,
36
(
8
), pp.
1159
1168
.
13.
Van Sint Jan
,
S. L.
,
Clapworthy
,
G. J.
, and
Rooze
,
M.
,
1998
, “
Visualization of Combined Motions in Human Joints
,”
IEEE Comput. Graphics Appl.
,
18
(
6
), pp.
10
14
.
14.
Van Sint Jan
,
S.
,
Salvia
,
P.
,
Hilal
,
I.
,
Sholukha
,
V.
,
Rooze
,
M.
, and
Clapworthy
,
G.
,
2002
, “
Registration of 6-DOFs Electrogoniometry and CT Medical Imaging for 3D Joint Modeling
,”
J. Biomech.
,
35
(
11
), pp.
1475
1484
.
15.
Millán Vaquero
,
R. M.
,
Lynch
,
S. D.
,
Fleischer
,
B.
,
Rzepecki
,
J.
,
Friese
,
K.-I.
,
Hurschler
,
C.
, and
Wolter
,
F.-E.
,
2015
, “
Enhanced Visualization of Knee Joint Functional Articulation Based on Helical Axis Method
,”
Bildverarbeitung für die Medizin 2015. Informatik aktuell
,
Springer
,
New York
, pp.
449
454
.
16.
Friese
,
K.-I.
, and
Wolter
,
F.-E.
,
2000
, “
Local and Global Geometric Methods for Analysis, Interrogation, Reconstruction, Modification, and Design of Shape
,” Computer Graphics International,
Welfenlab Report No. 3
, pp.
137
151
.
17.
Serra
,
J.
,
1984
,
Image Analysis and Mathematical Morphology
, Vol.
1
,
Academic Press
,
Orlando, FL
.
18.
Kanamiya
,
T.
,
Naito
,
M.
,
Hara
,
M.
, and
Yoshimura
,
I.
,
2002
, “
The Influences of Biomechanical Factors on Cartilage Regeneration After High Tibial Osteotomy for Knees With Medial Compartment Osteoarthritis
,”
Arthroscopy
,
18
(
7
), pp.
725
729
.
19.
Houard
,
X.
,
Goldring
,
M. B.
, and
Berenbaum
,
F.
,
2013
, “
Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis
,”
Curr. Rheumatol. Rep.
,
15
(
11
), pp.
1
10
.
20.
Gehlenborg
,
N.
,
O'Donoghue
,
S. I.
,
Baliga
,
N. S.
,
Goesmann
,
A.
,
Hibbs
,
M. A.
,
Kitano
,
H.
,
Kohlbacher
,
O.
,
Neuweger
,
H.
,
Schneider
,
R.
,
Tenenbaum
,
D.
, and
Gavin
,
A.-C.
,
2010
, “
Visualization of Omics Data for Systems Biology
,”
Nat. Methods
,
7
(Suppl. 3), pp.
S56
S68
.
21.
O'Donoghue
,
S. I.
,
Gavin
,
A.-C.
,
Gehlenborg
,
N.
,
Goodsell
,
D. S.
,
Hériché
,
J.-K.
,
Nielsen
,
C. B.
,
North
,
C.
,
Olson
,
A. J.
,
Procter
,
J. B.
,
Shattuck
,
D. W.
,
Walter
,
T.
, and
Wong
,
B.
,
2010
, “
Visualizing Biological Data—Now and in the Future
,”
Nat. Methods
,
7
(Suppl. 3), pp.
S2
S4
.
22.
Hunter
,
P.
,
Coveney
,
P. V.
,
de Bono
,
B.
,
Diaz
,
V.
,
Fenner
,
J.
,
Frangi
,
A. F.
,
Harris
,
P.
,
Hose
,
R.
,
Kohl
,
P.
,
Lawford
,
P.
,
McCormack
,
K.
,
Mendes
,
M.
,
Omholt
,
S.
,
Quarteroni
,
A.
,
Shublaq
,
N.
,
Skår
,
J.
,
Stroetmann
,
K.
,
Tegner
,
J.
,
Thomas
,
S. R.
,
Tollis
,
I.
,
Tsamardinos
,
I.
,
van Beek
,
J. H. G. M.
, and
Viceconti
,
M.
,
2010
, “
A Vision and Strategy for the Virtual Physiological Human in 2010 and Beyond
,”
Philos. Trans. R. Soc. London A
,
368
(
1920
), pp.
2595
2614
.
23.
Rossman
,
W.
,
2002
,
Lie Groups: An Introduction Through Linear Groups
,
Oxford University Press
,
New York
.
24.
Jinkerson
,
R. A.
,
Abrams
,
S. L.
,
Bardis
,
L.
,
Chryssostomidis
,
C.
,
Clément
,
A.
,
Patrikalakis
,
N. M.
, and
Wolter
,
F.-E.
,
1993
, “
Inspection and Feature Extraction of Marine Propellers
,”
J. Ship Prod.
,
9
, pp.
88
106
.
25.
Visser
,
M.
,
Stramigioli
,
S.
, and
Heemskerk
,
C.
,
2006
, “
Cayley–Hamilton for Roboticists
,”
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
4187
4192
.
26.
Woltring
,
H.
,
1994
, “
3-D Attitude Representation of Human Joints: A Standardization Proposal
,”
J. Biomech.
,
27
(
12
), pp.
1399
1414
.
27.
Grassia
,
F. S.
,
1998
, “
Practical Parameterization of Rotations Using the Exponential Map
,”
J. Graphics Tools
,
3
(
3
), pp.
29
48
.
28.
Šenk
,
M.
, and
Chèze
,
L.
,
2006
, “
Rotation Sequence as an Important Factor in Shoulder Kinematics
,”
Clin. Biomech.
,
21
(Suppl. 1), pp.
3
8
.
29.
Gutschke
,
M.
,
Vais
,
A.
, and
Wolter
,
F.-E.
,
2015
, “
Differential Geometric Methods for Examining the Dynamics of Slow-Fast Vector Fields
,”
Visual Comput.
,
31
(
2
), pp.
169
186
.
30.
Thielhelm
,
H.
,
Vais
,
A.
, and
Wolter
,
F.-E.
,
2015
, “
Geodesic Bifurcation on Smooth Surfaces
,”
Visual Comput.
,
31
(
2
), pp.
187
204
.
31.
Wolter
,
F.-E.
, and
Tuohy
,
S. T.
,
1992
, “
Curvature Computations for Degenerate Surface Patches
,”
Comput. Aided Geom. Des
,
9
(
4
), pp.
241
270
.
32.
Rodrigues
,
O.
,
1840
, “
Des lois géometriques qui regissent les déplacements d’ un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considerées indépendent des causes qui peuvent les produire
,”
J. Math. Pures Appl.
,
5
, pp.
380
400
.
33.
Ostermeier
,
S.
,
Hurschler
,
C.
, and
Stukenborg-Colsman
,
C.
,
2004
, “
Quadriceps Function After TKA—An In Vitro Study in a Knee Kinematic Simulator
,”
Clin. Biomech.
,
19
(
3
), pp.
270
276
.
34.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
35.
Spoor
,
C.
, and
Veldpaus
,
F.
,
1980
, “
Rigid Body Motion Calculated From Spatial Co-Ordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.
36.
Belta
,
C.
, and
Kumar
,
V.
,
2002
, “
Euclidean Metrics for Motion Generation on se (3)
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
1
), pp.
47
60
.
37.
Borg
,
I.
, and
Groenen
,
P. J.
,
2005
,
Modern Multidimensional Scaling: Theory and Applications
,
Springer
,
Berlin
.
38.
Cox
,
T. F.
, and
Cox
,
M. A.
,
2000
,
Multidimensional Scaling
,
CRC Press
, Boca Raton, FL.
39.
Reuter
,
M.
,
Wolter
,
F.-E.
, and
Peinecke
,
N.
,
2006
, “
Laplace–Beltrami Spectra as Shape-DNA of Surfaces and Solids
,”
Comput. Aided Des.
,
38
(
4
), pp.
342
366
.
40.
Peinecke
,
N.
,
Wolter
,
F.-E.
, and
Reuter
,
M.
,
2007
, “
Laplace Spectra as Fingerprints for Image Recognition
,”
Comput. Aided Des.
,
39
(
6
), pp.
460
476
.
41.
Reuter
,
M.
,
Niethammer
,
M.
,
Wolter
,
F.-E.
,
Bouix
,
S.
, and
Shenton
,
M.
,
2007
, “
Global Medical Shape Analysis Using the Volumetric Laplace Spectrum
,”
International Conference on Cyberworlds 2007
(
NASAGEM
), IEEE Hannover, Germany, Oct. 24–26, pp.
417
426
.
42.
Friese
,
K.-I.
,
Blanke
,
P.
, and
Wolter
,
F.-E.
,
2011
, “
YaDiV—An Open Platform for 3D Visualization and 3D Segmentation of Medical Data
,”
Visual Comput.
,
27
(
2
), pp.
129
139
.
43.
Vlasov
,
R.
,
Friese
,
K.-I.
, and
Wolter
,
F.-E.
,
2013
, “
Haptic Rendering of Volume Data With Collision Detection Guarantee Using Path Finding
,”
Transactions on Computational Science XVIII
(Lecture Notes in Computer Science), Vol. 7848,
Springer
,
Berlin/Heidelberg
, pp.
212
231
.
44.
Goldring
,
M. B.
,
2012
, “
Articular Cartilage Degradation in Osteoarthritis
,”
HSS J.
,
8
(
1
), pp.
7
9
.
45.
Ondrésik
,
M.
,
Correia
,
C.
,
Sousa
,
R.
,
Oliveira
,
J.
, and
Reis
,
R.
,
2014
, “
Understanding Cellular Behaviour in Early and Late Stage of MSD
,”
J. Tissue Eng. Regener Med.
,
8
, p.
412
.
46.
Astephen
,
J. L.
,
Deluzio
,
K. J.
,
Caldwell
,
G. E.
,
Dunbar
,
M. J.
, and
Hubley-Kozey
,
C. L.
,
2008
, “
Gait and Neuromuscular Pattern Changes are Associated With Differences in Knee Osteoarthritis Severity Levels
,”
J. Biomech.
,
41
(
4
), pp.
868
876
.
47.
Chen
,
J.
,
Dougherty
,
E.
,
Demir
,
S.
,
Friedman
,
C.
,
Li
,
C.-S.
, and
Wong
,
S.
,
2005
, “
Grand Challenges for Multimodal Bio-Medical Systems
,”
IEEE Circuits Syst. Mag.
,
5
(
2
), pp.
46
52
.
48.
McFarlane
,
N. J.
,
Ma
,
X.
,
Clapworthy
,
G. J.
,
Bessis
,
N.
, and
Testi
,
D.
,
2012
, “
A Survey and Classification of Visualisation in Multiscale Biomedical Applications
,”
16th International Conference on Information Visualisation
, Montpellier, France, July 11–13, pp.
561
566
.
49.
Millán Vaquero
,
R. M.
,
Rzepecki
,
J.
,
Friese
,
K.-I.
, and
Wolter
,
F.-E.
,
2014
, “
Visualization and User Interaction Methods for Multiscale Biomedical Data
,”
3D Multiscale Physiological Human
,
Springer
,
Berlin
, pp.
107
133
.
50.
Hauser
,
H.
,
2006
, “
Generalizing Focus+Context Visualization
,”
Scientific Visualization: The Visual Extraction of Knowledge From Data
(Mathematics and Visualization),
Springer
,
Berlin, Heidelberg
, pp.
305
327
.
51.
Agibetov
,
A.
,
Millán Vaquero
,
R. M.
,
Friese
,
K.-I.
,
Patanè
,
G.
,
Spagnuolo
,
M.
, and
Wolter
,
F.-E.
,
2014
, “
Integrated Visualization and Analysis of a Multi-Scale Biomedical Knowledge Space
,” EuroVis Workshop on Visual Analytics, The Eurographics Association, Goslar, Germany, pp.
25
29
.
52.
Rzepecki
,
J.
,
Millán Vaquero
,
R. M.
,
Vais
,
A.
,
Friese
,
K.-I.
, and
Wolter
,
F.-E.
,
2014
, “
Multimodal Approach for Natural Biomedical Multi-Scale Exploration
,”
Advances in Visual Computing
,
Springer
,
Berlin
, pp.
620
631
.
53.
Higgins
,
T.
,
2010
, “
Unity—3d Game Engine
,” Unity Technologies, San Francisco, CA, accessed May 1, 2016, http://unity3d.com/
54.
Millán Vaquero
,
R. M.
,
Agibetov
,
A.
,
Rzepecki
,
J.
,
Ondrésik
,
M.
,
Vais
,
A.
,
Oliveira
,
J. M.
,
Patanè
,
G.
,
Friese
,
K.-I.
,
Reis
,
R. L.
,
Spagnuolo
,
M.
, and
Wolter
,
F.-E.
,
2015
, “
A Semantically Adaptable Integrated Visualization and Natural Exploration of Multi-Scale Biomedical Data
,”
19th International Conference on Information Visualisation
, Barcelona, Spain, July 22–24, pp.
543
552
.
55.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Kim
,
R. H.
, and
Sharma
,
A.
,
2010
, “
Gap Balancing Versus Measured Resection Technique for Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
102
107
.
56.
Zhang
,
X.-L.
,
Zhang
,
W.
, and
Shao
,
J.-J.
,
2012
, “
Rotational Alignment in Total Knee Arthroplasty: Nonimage-Based Navigation System Versus Conventional Technique
,”
Chin. Med. J.
,
125
(
2
), pp.
236
243
.
57.
Guan
,
S.
,
Gray
,
H.
,
Keynejad
,
F.
, and
Pandy
,
M.
,
2016
, “
Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait
,”
IEEE Trans. Med. Imaging
,
35
(
1
), pp.
326
336
.
You do not currently have access to this content.