The rostral-caudally aligned fiber-reinforced structure of spinal cord white matter (WM) gives rise to transverse isotropy in the material. Stress and strain patterns generated in the spinal cord parenchyma following spinal cord injury (SCI) are multidirectional and dependent on the mechanism of the injury. Our objective was to develop a WM constitutive model that captures the material transverse isotropy under dynamic loading. The WM mechanical behavior was extracted from the published tensile and compressive experiments. Combinations of isotropic and fiber-reinforcing models were examined in a conditional quasi-linear viscoelastic (QLV) formulation to capture the WM mechanical behavior. The effect of WM transverse isotropy on SCI model outcomes was evaluated by simulating a nonhuman primate (NHP) contusion injury experiment. A second-order reduced polynomial hyperelastic energy potential conditionally combined with a quadratic reinforcing function in a four-term Prony series QLV model best captured the WM mechanical behavior (0.89 < R2 < 0.99). WM isotropic and transversely isotropic material models combined with discrete modeling of the pia mater resulted in peak impact forces that matched the experimental outcomes. The transversely isotropic WM with discrete pia mater resulted in maximum principal strain (MPS) distributions which effectively captured the combination of ipsilateral peripheral WM sparing, ipsilateral injury and contralateral sparing, and the rostral/caudal spread of damage observed in in vivo injuries. The results suggest that the WM transverse isotropy could have an important role in correlating tissue damage with mechanical measures and explaining the directional sensitivity of the spinal cord to injury.

References

References
1.
Lam
,
C. J.
,
Assinck
,
P.
,
Liu
,
J.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2014
, “
Impact Depth and the Interaction With Impact Speed Affect the Severity of Contusion Spinal Cord Injury in Rats
,”
J. Neurotrauma
,
31
(
24
), pp.
1985
1997
.
2.
Noyes
,
D. H.
,
1987
, “
Electromechanical Impactor for Producing Experimental Spinal Cord Injury in Animals
,”
Med. Biol. Eng. Comput.
,
25
(
3
), pp.
335
340
.
3.
Bresnahan
,
J. C.
,
Beattie
,
M. S.
,
Todd
,
F. D.
, and
Noyes
,
D. H.
,
1987
, “
A Behavioral and Anatomical Analysis of Spinal Cord Injury Produced by a Feedback-Controlled Impaction Device
,”
Exp. Neurol.
,
95
(
3
), pp.
548
570
.
4.
Salegio
,
E. A.
,
Bresnahan
,
J. C.
,
Sparrey
,
C. J.
,
Camisa
,
W.
,
Fischer
,
J.
,
Leasure
,
J.
,
Buckley
,
J.
,
Nout-Lomas
,
Y. S.
,
Rosenzweig
,
E. S.
,
Moseanko
,
R.
,
Strand
,
S.
,
Hawbecker
,
S.
,
Lemoy
,
M.-J.
,
Haefeli
,
J.
,
Ma
,
X.
,
Nielson
,
J. L.
,
Edgerton
,
V. R.
,
Ferguson
,
A. R.
,
Tuszynski
,
M. H.
, and
Beattie
,
M. S.
,
2016
, “
A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates (Macaca mulatta)
,”
J. Neurotrauma
,
33
(
5
), pp.
439
59
.
5.
Kwon
,
B. K.
,
Oxland
,
T. R.
, and
Tetzlaff
,
W.
,
2002
, “
Animal Models Used in Spinal Cord Regeneration Research
,”
Spine (Phila. Pa. 1976)
,
27
(
14
), pp.
1504
1510
.
6.
Choo
,
A. M. Te
,
Liu
,
J.
,
Liu
,
Z.
,
Dvorak
,
M.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2009
, “
Modeling Spinal Cord Contusion, Dislocation, and Distraction: Characterization of Vertebral Clamps, Injury Severities, and Node of Ranvier Deformations
,”
J. Neurosci. Methods
,
181
(
1
), pp.
6
17
.
7.
Ma
,
M.
,
Basso
,
D. M.
,
Walters
,
P.
,
Stokes
,
B. T.
, and
Jakeman
,
L. B.
,
2001
, “
Behavioral and Histological Outcomes Following Graded Spinal Cord Contusion Injury in the C57Bl/6 Mouse
,”
Exp. Neurol.
,
169
(
2
), pp.
239
54
.
8.
Basso
,
D. M.
,
Beattie
,
M. S.
, and
Bresnahan
,
J. C.
,
1996
, “
Graded Histological and Locomotor Outcomes After Spinal Cord Contusion Using the NYU Weight-Drop Device Versus Transection
,”
Exp. Neurol.
,
139
(
2
), pp.
244
256
.
9.
Chang
,
G.-L.
,
Hung
,
T.-K.
, and
Feng
,
W. W.
,
1988
, “
An In-Vivo Measurement and Analysis of Viscoelastic Properties of the Spinal Cord of Cats
,”
ASME J. Biomech. Eng.
,
110
(
2
), pp.
115
122
.
10.
Hung
,
T.-K.
,
Chang
,
G.-L.
, and
Chang
,
J.-L.
,
1981
, “
Stress-Strain Relationship and Neurological Sequelae of Uniaxial Elongation of the Spinal Cord of Cats
,”
Surg. Neurol.
,
15
(
6
), pp.
471
476
.
11.
Fiford
,
R. J.
, and
Bilston
,
L. E.
,
2005
, “
The Mechanical Properties of Rat Spinal Cord In Vitro
,”
J. Biomech.
,
38
(
7
), pp.
1509
1515
.
12.
Luna
,
C.
,
Detrick
,
L.
,
Shah
,
S. B.
,
Cohen
,
A. H.
, and
Aranda-Espinoza
,
H.
,
2013
, “
Mechanical Properties of the Lamprey Spinal Cord: Uniaxial Loading and Physiological Strain
,”
J. Biomech.
,
46
(
13
), pp.
2194
2200
.
13.
Bilston
,
L. E.
, and
Thibault
,
L. E.
,
1996
, “
The Mechanical Properties of the Human Cervical Spinal Cord In Vitro
,”
Ann. Biomed. Eng.
,
24
(
1 Suppl
), pp.
67
74
.
14.
Hung
,
T.-K.
, and
Chang
,
G.-L.
,
1981
, “
Biomechanical and Neurological Response of the Spinal Cord of a Puppy to Uniaxial Tension
,”
ASME J. Biomech. Eng.
,
103
(
1
), pp.
43
47
.
15.
Oakland
,
R. J.
,
Hall
,
R. M.
,
Wilcox
,
R. K.
, and
Barton
,
D. C.
,
2006
, “
The Biomechanical Response of Spinal Cord Tissue to Uniaxial Loading
,”
Proc. Inst. Mech. Eng. H
,
220
(
4
), pp.
489
492
.
16.
Clarke
,
E. C.
,
Cheng
,
S.
, and
Bilston
,
L. E.
,
2009
, “
The Mechanical Properties of Neonatal Rat Spinal Cord In Vitro, and Comparisons With Adult
,”
J. Biomech.
,
42
(
10
), pp.
1397
1402
.
17.
Ichihara
,
K.
,
Taguchi
,
T.
,
Shimada
,
Y.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2001
, “
Gray Matter of the Bovine Cervical Spinal Cord is Mechanically More Rigid and Fragile Than the White Matter
,”
J. Neurotrauma
,
18
(
3
), pp.
361
367
.
18.
Ichihara
,
K.
,
Taguchi
,
T.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2003
, “
Mechanism of the Spinal Cord Injury and the Cervical Spondylotic Myelopathy: New Approach Based on the Mechanical Features of the Spinal Cord White and Gray Matter
,”
J. Neurosurg.
,
99
(
3 Suppl
), pp.
278
285
.
19.
Sparrey
,
C. J.
, and
Keaveny
,
T. M.
,
2011
, “
Compression Behavior of Porcine Spinal Cord White Matter
,”
J. Biomech.
,
44
(
6
), pp.
1078
1082
.
20.
Galle
,
B.
,
Ouyang
,
H.
,
Shi
,
R.
, and
Nauman
,
E.
,
2010
, “
A Transversely Isotropic Constitutive Model of Excised Guinea Pig Spinal Cord White Matter
,”
J. Biomech.
,
43
(
14
), pp.
2839
2843
.
21.
Maikos
,
J. T.
,
Qian
,
Z.
,
Metaxas
,
D.
, and
Shreiber
,
D. I.
,
2008
, “
Finite Element Analysis of Spinal Cord Injury in the Rat
,”
J. Neurotrauma
,
25
(
7
), pp.
795
816
.
22.
Galle
,
B.
,
Ouyang
,
H.
,
Shi
,
R.
, and
Nauman
,
E.
,
2007
, “
Correlations Between Tissue-Level Stresses and Strains and Cellular Damage Within the Guinea Pig Spinal Cord White Matter
,”
J. Biomech.
,
40
(
13
), pp.
3029
3033
.
23.
Russell
,
C. M.
,
Choo
,
A. M.
,
Tetzlaff
,
W.
,
Chung
,
T.
, and
Oxland
,
T. R.
,
2012
, “
Maximum Princilal Strain Correlates With Spinal Cord Tissue Damage in Contusion and Dislocation Injuries in the Rat Cervical Spine
,”
J. Neurotrauma
,
29
(
8
), pp.
1574
1585
.
24.
Imajo
,
Y.
,
Hiiragi
,
I.
,
Kato
,
Y.
, and
Taguchi
,
T.
,
2009
, “
Use of the Finite Element Method to Study the Mechanism of Spinal Cord Injury Without Radiological Abnormality in the Cervical Spine
,”
Spine (Phila. Pa. 1976)
,
34
(
2
), pp.
E83
87
.
25.
Bunge
,
R. P.
,
Puckett
,
W. R.
,
Becerra
,
J. L.
,
Marcillo
,
A.
, and
Quencer
,
R. M.
,
1993
, “
Observations on the Pathology of Human Spinal Cord Injury. A Review and Classification of 22 New Cases With Details From a Case of Chronic Cord Compression With Extensive Focal Demyelination
,”
Adv. Neurol.
,
59
, pp.
75
89
.
26.
Metz
,
G. A.
,
Curt
,
A.
,
van de Meent
,
H.
,
Klusman
,
I.
,
Schwab
,
M. E.
, and
Dietz
,
V.
,
2000
, “
Validation of the Weight-Drop Contusion Model in Rats: A Comparative Study of Human Spinal Cord Injury.
,”
J. Neurotrauma
,
17
(
1
), pp.
1
17
.
27.
Ouyang
,
H.
,
Galle
,
B.
,
Li
,
J.
,
Nauman
,
E.
, and
Shi
,
R.
,
2008
, “
Biomechanics of Spinal Cord Injury: A Multimodal Investigation Using Ex Vivo Guinea Pig Spinal Cord White Matter
,”
J. Neurotrauma
,
25
(
1
), pp.
19
29
.
28.
Sparrey
,
C. J.
,
Manley
,
G. T.
, and
Keaveny
,
T. M.
,
2009
, “
Effects of White, Grey, and Pia Mater Properties on Tissue Level Stresses and Strains in the Compressed Spinal Cord
,”
J. Neurotrauma
,
26
(
4
), pp.
585
595
.
29.
Koser
,
D. E.
,
Moeendarbary
,
E.
,
Hanne
,
J.
,
Kuerten
,
S.
, and
Franze
,
K.
,
2015
, “
CNS Cell Distribution and Axon Orientation Determine Local Spinal Cord Mechanical Properties
,”
Biophys. J.
,
108
(
9
), pp.
2137
2147
.
30.
Shellswell
,
G. B.
,
Restall
,
D. J.
,
Duance
,
V. C.
, and
Bailey
,
A. J.
,
1979
, “
Identification and Differential Distribution of Collagen Types in the Central and Peripheral Nervous Systems
,”
FEBS Lett.
,
106
(
2
), pp.
305
308
.
31.
Chatelin
,
S.
,
Deck
,
C.
, and
Willinger
,
R.
,
2012
, “
An Anisotropic Viscous Hyperelastic Constitutive Law for Brain Material Finite-Element Modeling
,”
J. Biorheol.
,
27
(
1
), pp.
26
37
.
32.
Ning
,
X.
,
Zhu
,
Q.
,
Lanir
,
Y.
, and
Margulies
,
S. S.
,
2006
, “
A Transversely Isotropic Viscoelastic Constitutive Equation for Brainstem Undergoing Finite Deformation
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
925
933
.
33.
Miller
,
K.
,
1999
, “
Constitutive Model of Brain Tissue Suitable for Finite Element Analysis of Surgical Procedures
,”
J. Biomech.
,
32
(
5
), pp.
531
537
.
34.
Miller
,
K.
,
2001
, “
How to Test Very Soft Biological Tissues in Extension?
,”
J. Biomech.
,
34
(
5
), pp.
651
657
.
35.
Miller
,
K.
,
2005
, “
Method of Testing Very Soft Biological Tissues in Compression
,”
J. Biomech.
,
38
(1), pp.
153
158
.
36.
Gefen
,
A.
, and
Margulies
,
S. S.
,
2004
, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
,
37
(
9
), pp.
1339
1352
.
37.
Moran
,
R.
,
Smith
,
J. H.
, and
García
,
J. J.
,
2014
, “
Fitted Hyperelastic Parameters for Human Brain Tissue From Reported Tension, Compression, and Shear Tests
,”
J. Biomech.
,
47
(
15
), pp.
3762
3766
.
38.
Meaney
,
D. F.
,
2003
, “
Relationship Between Structural Modeling and Hyperelastic Material Behavior: Application to CNS White Matter
,”
Biomech. Model. Mechanobiol.
,
1
(
4
), pp.
279
293
.
39.
Maikos
,
J. T.
,
Elias
,
R. A. I.
, and
Shreiber
,
D. I.
,
2008
, “
Mechanical Properties of Dura Mater From the Rat Brain and Spinal Cord
,”
J. Neurotrauma
,
25
(
1
), pp.
38
51
.
40.
Sparrey
,
C. J.
,
Salegio
,
E. A.
,
Camisa
,
W.
,
Tam
,
H.
,
Beattie
,
M. S.
, and
Bresnahan
,
J. C.
,
2016
, “
Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates
,”
J. Neurotrauma
,
33
(
12
), pp.
1136
1149
.
41.
Greaves
,
C. Y.
,
Gadala
,
M. S.
, and
Oxland
,
T. R.
,
2008
, “
A Three-Dimensional Finite Element Model of the Cervical Spine With Spinal Cord: An Investigation of Three Injury Mechanisms
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
396
405
.
42.
Kimpara
,
H.
,
Nakahira
,
Y.
,
Iwamoto
,
M.
,
Miki
,
K.
,
Ichihara
,
K.
,
Kawano
,
S.
, and
Taguchi
,
T.
,
2006
, “
Investigation of Anteroposterior Head-Neck Responses During Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model
,”
Stapp Car Crash J.
,
50
(
Nov.
), pp.
509
544
.
43.
Shetye
,
S. S.
,
Troyer
,
K. L.
,
Streijger
,
F.
,
Lee
,
J. H. T.
,
Kwon
,
B. K.
,
Cripton
,
P. A.
, and
Puttlitz
,
C. M.
,
2014
, “
Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord
,”
Acta Biomater.
,
10
(
2
), pp.
792
797
.
44.
Sparrey
,
C. J.
,
Choo
,
A. M.
,
Liu
,
J.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2008
, “
The Distribution of Tissue Damage in the Spinal Cord is Influenced by the Contusion Velocity
,”
Spine (Phila. Pa. 1976)
,
33
(
22
), pp.
E812
819
.
45.
Chafi
,
M. S.
,
Dirisala
,
V.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2009
, “
A Finite Element Method Parametric Study of the Dynamic Response of the Human Brain With Different Cerebrospinal Fluid Constitutive Properties
,”
Proc. Inst. Mech. Eng. H
,
223
(
8
), pp.
1003
1019
.
46.
Tunturi
,
A. R.
,
1978
, “
Elasticity of the Spinal Cord, Pia, and Denticulate Ligament in the Dog
,”
J. Neurosurg.
,
48
(6), pp.
975
979
.
47.
Shreiber
,
D. I.
,
Bain
,
A. C.
, and
Meaney
,
D. F.
,
1997
, “
In Vivo Threshlolds for Mechanical Injury to the Blood-Brain Barrier
,”
SAE
Technical Paper No. 973335.
48.
Bain
,
A. C.
,
Meaney
,
D. F.
, and
Hall
,
H.
,
2000
, “
Tissue-Level Thresholds for Axonal Damage in an Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
615
622
.
49.
Zhu
,
Q.
,
Prange
,
M.
, and
Margulies
,
S.
,
2006
, “
Predicting Unconsciousness From a Pediatric Brain Injury Threshold
,”
Dev. Neurosci.
,
28
(
4–5
), pp.
388
395
.
50.
Sparrey
,
C. J.
, and
Keaveny
,
T. M.
,
2009
, “
The Effect of Flash Freezing on Variability in Spinal Cord Compression Behavior
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111010
.
51.
Velardi
,
F.
,
Fraternali
,
F.
, and
Angelillo
,
M.
,
2006
, “
Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue
,”
Biomech. Model. Mechanobiol.
,
5
(
1
), pp.
53
61
.
52.
Giordano
,
C.
, and
Kleiven
,
S.
,
2014
, “
Connecting Fractional Anisotropy From Medical Images With Mechanical Anisotropy of a Hyperviscoelastic Fibre-Reinforced Constitutive Model for Brain Tissu
,”
J. R. Soc. Interface
,
11
(
91
), p.
20130914
.
53.
Cloots
,
R. J. H.
,
van Dommelen
,
J. A. W.
,
Kleiven
,
S.
, and
Geers
,
M. G. D.
,
2013
, “
Multi-Scale Mechanics of Traumatic Brain Injury: Predicting Axonal Strains From Head Loads
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
137
50
.
54.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. A. Y. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
55.
Yuan
,
Q.
,
Dougherty
,
L.
, and
Margulies
,
S. S.
,
1998
, “
In Vivo Human Cervical Spinal Cord Deformation and Displacement in Flexion
,”
Spine (Phila. Pa. 1976)
,
23
(
15
), pp.
1677
1683
.
56.
Bhatnagar
,
T.
,
Liu
,
J.
,
Yung
,
A.
,
Cripton
,
P. A.
,
Kozlowski
,
P.
, and
Oxland
,
T.
,
2015
, “
In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1285
1298
.
57.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
,
2008
, “
Rheological Properties of the Tissues of the Central Nervous System: A Review
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1318
1337
.
58.
Bhatnagar
,
T.
,
Liu
,
J.
,
Yung
,
A.
,
Cripton
,
P.
,
Kozlowski
,
P.
,
Tetzlaff
,
W.
, and
Oxland
,
T.
,
2016
, “
Quantifying the Internal Deformation of the Rodent Spinal Cord During Acute Spinal Cord Injury—The Validation of a Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
4
), pp.
386
395
.
59.
Choo
,
A. M.
,
Liu
,
J.
,
Lam
,
C. K.
,
Dvorak
,
M.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2007
, “
Contusion, Dislocation, and Distraction: Primary Hemorrhage and Membrane Permeability in Distinct Mechanisms of Spinal Cord Injury
,”
J. Neurosurg. Spine
,
6
(3), pp.
255
266
.
60.
Merodio
,
J.
, and
Ogden
,
R. W.
,
2005
, “
Mechanical Response of Fiber-Reinforced Incompressible Non-Linearly Elastic Solids
,”
Int. J. Nonlinear Mech.
,
40
(
2–3
), pp.
213
227
.
61.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.
62.
Watanabe
,
I.
,
Yuge
,
K.
,
Nishimoto
,
T.
,
Maurakami
,
S.
, and
Takao
,
H.
,
2007
, “
Impact Injury Analysis of the Human Head
,”
Auto Technol.
,
7
(
6
), pp.
34
37
.
63.
Hasgall
,
P.
,
Di Gennaro
,
F.
,
Baumgartner
,
C.
,
Neufeld
,
E.
,
Gosselin
,
M.
,
Payne
,
D.
,
Klingenbock
,
A.
, and
Kuster
,
N.
,
2015
, “
IT'IS Database for Thermal and Electromagnetic Parameters of Biological Tissues
,” Version 3.0 (Online), IT'IS Foundation, Zurich, Switzerland, available at: www.itis.ethz.ch/database
You do not currently have access to this content.