Quantitative computed tomography-based finite-element analysis (QCT/FEA) has become increasingly popular in an attempt to understand and possibly reduce vertebral fracture risk. It is known that scanning acquisition settings affect Hounsfield units (HU) of the CT voxels. Material properties assignments in QCT/FEA, relating HU to Young's modulus, are performed by applying empirical equations. The purpose of this study was to evaluate the effect of QCT scanning protocols on predicted stiffness values from finite-element models. One fresh frozen cadaveric torso and a QCT calibration phantom were scanned six times varying voltage and current and reconstructed to obtain a total of 12 sets of images. Five vertebrae from the torso were experimentally tested to obtain stiffness values. QCT/FEA models of the five vertebrae were developed for the 12 image data resulting in a total of 60 models. Predicted stiffness was compared to the experimental values. The highest percent difference in stiffness was approximately 480% (80 kVp, 110 mAs, U70), while the lowest outcome was ∼1% (80 kVp, 110 mAs, U30). There was a clear distinction between reconstruction kernels in predicted outcomes, whereas voltage did not present a clear influence on results. The potential of QCT/FEA as an improvement to conventional fracture risk prediction tools is well established. However, it is important to establish research protocols that can lead to results that can be translated to the clinical setting.

References

References
1.
Matsuura
,
Y.
,
Giambini
,
H.
,
Ogawa
,
Y.
,
Fang
,
Z.
,
Thoreson
,
A. R.
,
Yaszemski
,
M. J.
,
Lu
,
L.
, and
An
,
K. N.
,
2014
, “
Specimen-Specific Nonlinear Finite Element Modeling to Predict Vertebrae Fracture Loads After Vertebroplasty
,”
Spine
,
39
(
22
), pp.
E1291
E1296
.
2.
Mirzaei
,
M.
,
Zeinali
,
A.
,
Razmjoo
,
A.
, and
Nazemi
,
M.
,
2009
, “
On Prediction of the Strength Levels and Failure Patterns of Human Vertebrae Using Quantitative Computed Tomography (QCT)-Based Finite Element Method
,”
J. Biomech.
,
42
(
11
), pp.
1584
1591
.
3.
Unnikrishnan
,
G. U.
,
Barest
,
G. D.
,
Berry
,
D. B.
,
Hussein
,
A. I.
, and
Morgan
,
E. F.
,
2013
, “
Effect of Specimen-Specific Anisotropic Material Properties in Quantitative Computed Tomography-Based Finite Element Analysis of the Vertebra
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101007
.
4.
Unnikrishnan
,
G. U.
, and
Morgan
,
E. F.
,
2011
, “
A New Material Mapping Procedure for Quantitative Computed Tomography-Based, Continuum Finite Element Analyses of the Vertebra
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071001
.
5.
Zysset
,
P. K.
,
Dall'ara
,
E.
,
Varga
,
P.
, and
Pahr
,
D. H.
,
2013
, “
Finite Element Analysis for Prediction of Bone Strength
,”
BoneKEy Reports
,
2
, p.
386
.
6.
Wang
,
X.
,
Sanyal
,
A.
,
Cawthon
,
P. M.
,
Palermo
,
L.
,
Jekir
,
M.
,
Christensen
,
J.
,
Ensrud
,
K. E.
,
Cummings
,
S. R.
,
Orwoll
,
E.
,
Black
,
D. M.
, and
Keaveny
,
T. M.
,
2012
, “
Prediction of New Clinical Vertebral Fractures in Elderly Men Using Finite Element Analysis of Ct Scans
,”
J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
,
27
(
4
), pp.
808
816
.
7.
Cann
,
C. E.
,
1987
, “
Quantitative CT Applications: Comparison of Current Scanners
,”
Radiology
,
162
(
1 Pt 1
), pp.
257
61
.
8.
Levi
,
C.
,
Gray
,
J. E.
,
Mccullough
,
E. C.
, and
Hattery
,
R. R.
,
1982
, “
The Unreliability of CT Numbers as Absolute Values
,”
AJR. Am. J. Roentgenol.
,
139
(
3
), pp.
443
447
.
9.
Paul
,
J.
,
Krauss
,
B.
,
Banckwitz
,
R.
,
Maentele
,
W.
,
Bauer
,
R. W.
, and
Vogl
,
T. J.
,
2012
, “
Relationships of Clinical Protocols and Reconstruction Kernels With Image Quality and Radiation Dose in a 128-Slice CT Scanner: Study With an Anthropomorphic and Water Phantom
,”
Eur. J. Radiol.
,
81
(
5
), pp.
e699
e703
.
10.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
11.
Les
,
C. M.
,
Keyak
,
J. H.
,
Stover
,
S. M.
,
Taylor
,
K. T.
, and
Kaneps
,
A. J.
,
1994
, “
Estimation of Material Properties in the Equine Metacarpus With Use of Quantitative Computed Tomography
,”
J. Orthop. Res.
,
12
(
6
), pp.
822
833
.
12.
Dragomir-Daescu
,
D.
,
Salas
,
C.
,
Uthamaraj
,
S.
, and
Rossman
,
T.
,
2015
, “
Quantitative Computed Tomography-Based Finite Element Analysis Predictions of Femoral Strength and Stiffness Depend on Computed Tomography Settings
,”
J. Biomech.
,
48
(
1
), pp.
153
161
.
13.
Giambini
,
H.
,
Dragomir-Daescu
,
D.
,
Huddleston
,
P. M.
,
Camp
,
J. J.
,
An
,
K. N.
, and
Nassr
,
A.
,
2015
, “
The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation
,”
ASME J. Biomech. Eng.
,
137
(
11
), p.
114502
.
14.
Giambini
,
H.
,
Qin
,
X.
,
Dragomir-Daescu
,
D.
,
An
,
K. N.
, and
Nassr
,
A.
,
2016
, “
Specimen-Specific Vertebral Fracture Modeling: A Feasibility Study Using the Extended Finite Element Method
,”
Med. Biol. Eng. Comput.
,
54
(
4
), pp.
583
593
.
15.
Dragomir-Daescu
,
D.
,
Op Den Buijs
,
J.
,
Mceligot
,
S.
,
Dai
,
Y.
,
Entwistle
,
R. C.
,
Salas
,
C.
,
Melton
,
L. J.
, III
,
Bennet
,
K. E.
,
Khosla
,
S.
, and
Amin
,
S.
,
2011
, “
Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
742
755
.
16.
Jang
,
K.
,
Kweon
,
D.
,
Lee
,
J.
,
Choi
,
J.
,
Goo
,
E.
,
Dong
,
K.
,
Lee
,
J.
,
Jin
,
G.
, and
Seo
,
S.
,
2011
, “
Measurement of Image Quality in CT Images Reconstructed With Different Kernels
,”
Journal of the Korean Physical Society
,
58
(
2
), pp.
334
342
.
17.
Cong
,
A.
,
Buijs
,
J. O.
, and
Dragomir-Daescu
,
D.
,
2011
, “
In Situ Parameter Identification of Optimal Density-Elastic Modulus Relationships in Subject-Specific Finite Element Models of the Proximal Femur
,”
Med. Eng. Phys.
,
33
(
2
), pp.
164
173
.
18.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
,
2006
, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site
,”
Spine
,
31
(
16
), pp.
1789
1794
.
19.
Kopperdahl
,
D. L.
,
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2002
, “
Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
20
(
4
), pp.
801
805
.
20.
Mirzaei
,
M.
,
Keshavarzian
,
M.
, and
Naeini
,
V.
,
2014
, “
Analysis of Strength and Failure Pattern of Human Proximal Femur Using Quantitative Computed Tomography (QCT)-Based Finite Element Method
,”
Bone
,
64
, pp.
108
114
.
21.
Rossman
,
T.
,
Kushvaha
,
V.
, and
Dragomir-Daescu
,
D.
,
2015
, “
QCT/FEA Predictions of Femoral Stiffness are Strongly Affected by Boundary Condition Modeling
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(2), pp. 208–216.
22.
Bonaretti
,
S.
,
Carpenter
,
R. D.
,
Saeed
,
I.
,
Burghardt
,
A. J.
,
Yu
,
L.
,
Bruesewitz
,
M.
,
Khosla
,
S.
, and
Lang
,
T.
,
2014
, “
Novel Anthropomorphic Hip Phantom Corrects Systemic Interscanner Differences in Proximal Femoral vBMD
,”
Phys. Med. Biol.
,
59
(
24
), pp.
7819
7834
.
You do not currently have access to this content.