Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments—a hindfoot (HF) segment and a forefoot (FF) segment—connected by a pin joint representing the toes flexion–extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior–posterior (AP) CoP, 8 mm for medial–lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The largest errors in AP CoP occurred at the beginning and end of stance phase when the vertical ground reaction force (vGRF) was small. Subject-specific deformable foot-ground contact models created using this approach should enable changes in foot-ground contact pattern to be predicted accurately by gait optimization studies, which may lead to improvements in personalized rehabilitation medicine.

References

References
1.
Kidder
,
S. M.
,
Abuzzahab
,
F. S.
,
Harris
,
G. F.
, and
Johnson
,
J. E.
,
1996
, “
A System for the Analysis of Foot and Ankle Kinematics During Gait
,”
IEEE Trans. Rehabil. Eng.
,
4
(
1
), pp.
25
32
.
2.
Mahboobin
,
A.
,
Cham
,
R.
, and
Piazza
,
S. J.
,
2010
, “
The Impact of a Systematic Reduction in Shoe-Floor Friction on Heel Contact Walking Kinematics—A Gait Simulation Approach
,”
J. Biomech.
,
43
(
8
), pp.
1532
1539
.
3.
Sasaki
,
K.
, and
Neptune
,
R. R.
,
2006
, “
Differences in Muscle Function During Walking and Running at the Same Speed
,”
J. Biomech.
,
39
(
11
), pp.
2005
2013
.
4.
Dorn
,
T. W.
,
Lin
,
Y. C.
, and
Pandy
,
M. G.
,
2012
, “
Estimates of Muscle Function in Human Gait Depend on How Foot-Ground Contact Is Modeled
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
6
), pp.
657
668
.
5.
Gerus
,
P.
,
Sartori
,
M.
,
Besier
,
T. F.
,
Fregly
,
B. J.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
,
D'Lima
,
D. D.
, and
Lloyd
,
D. G.
,
2013
, “
Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces
,”
J. Biomech.
,
46
(
16
), pp.
2778
2786
.
6.
Adouni
,
M.
, and
Shirazi-Adl
,
A.
,
2014
, “
Evaluation of Knee Joint Muscle Forces and Tissue Stresses-Strains During Gait in Severe OA Versus Normal Subjects
,”
J. Orthop. Res.
,
32
(
1
), pp.
69
78
.
7.
Knarr
,
B. A.
,
Kesar
,
T. M.
,
Reisman
,
D. S.
,
Binder-Macleod
,
S. A.
, and
Higginson
,
J. S.
,
2013
, “
Changes in the Activation and Function of the Ankle Plantar Flexor Muscles Due to Gait Retraining in Chronic Stroke Survivors
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
12
.
8.
Shao
,
Q.
,
Bassett
,
D. N.
,
Manal
,
K.
, and
Buchanan
,
T. S.
,
2009
, “
An EMG-Driven Model to Estimate Muscle Forces and Joint Moments in Stroke Patients
,”
Comput. Biol. Med.
,
39
(
12
), pp.
1083
1088
.
9.
Hoang
,
H. X.
, and
Reinbolt
,
J. A.
,
2012
, “
Crouched Posture Maximizes Ground Reaction Forces Generated by Muscles
,”
Gait Posture
,
36
(
3
), pp.
405
408
.
10.
Correa
,
T. A.
,
Baker
,
R.
,
Graham
,
H. K.
, and
Pandy
,
M. G.
,
2011
, “
Accuracy of Generic Musculoskeletal Models in Predicting the Functional Roles of Muscles in Human Gait
,”
J. Biomech.
,
44
(
11
), pp.
2096
2105
.
11.
Rezgui
,
T.
,
Megrot
,
F.
, and
Marin
,
F.
,
2013
, “
Musculoskeletal Modeling of Cerebral Palsy Children: Sensitivity Analysis of Musculoskeletal Model Parameter's Values for Gait Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
Suppl. 1
), pp.
155
157
.
12.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.
13.
van den Bogert
,
A. J.
,
Blana
,
D.
, and
Heinrich
,
D.
,
2011
, “
Implicit Methods for Efficient Musculoskeletal Simulation and Optimal Control
,”
Proc. IUTAM
,
2
, pp.
297
316
.
14.
Halloran
,
J. P.
,
Ackermann
,
M.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
,
2010
, “
Concurrent Musculoskeletal Dynamics and Finite Element Analysis Predicts Altered Gait Patterns to Reduce Foot Tissue Loading
,”
J. Biomech.
,
43
(
14
), pp.
2810
2815
.
15.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2012
, “
Optimization of Prosthetic Foot Stiffness to Reduce Metabolic Cost and Intact Knee Loading During Below-Knee Amputee Walking: A Theoretical Study
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
111005
.
16.
McLean
,
S. G.
,
Su
,
A.
, and
van den Bogert
,
A. J.
,
2003
, “
Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
864
874
.
17.
Naemi
,
R.
, and
Chockalingam
,
N.
,
2013
, “
Mathematical Models to Assess Foot-Ground Interaction: An Overview
,”
Med. Sci. Sports Exercise
,
45
(
8
), pp.
1524
1533
.
18.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
19.
Gilchrist
,
L. A.
, and
Winter
,
D. A.
,
1996
, “
A Two-Part, Viscoelastic Foot Model for Use in Gait Simulations
,”
J. Biomech.
,
29
(
6
), pp.
795
798
.
20.
Moreira
,
P.
,
Silva
,
M.
, and
Flores
,
P.
,
2009
, “
Foot Ground Interaction in Human Gait: Modelling and Simulation
,”
7th European Solid Mechanics Conference
(ESMC7), Lisbon, Portugal, Sept. 7–11.
21.
Pamies-Vila
,
R.
,
Font-Llagunes
,
J. M.
,
Lugris
,
U.
, and
Cuadrado
,
J.
,
2012
, “
Two Approaches to Estimate Foot-Ground Contact Parameters Using Optimization Techniques
,”
The 2nd Joint International Conference on Multibody System Dynamics
, Stuttgart, Germany, May 29–June 1.
22.
Wojtrya
,
M.
,
2003
, “
Multibody Simulation Model of Human Walking
,”
Mech. Based Des. Struct. Mach.
,
31
(
3
), pp.
357
379
.
23.
Bruening
,
D. A.
,
Cooney
,
K. M.
,
Buczek
,
F. L.
, and
Richards
,
J. G.
,
2010
, “
Measured and Estimated Ground Reaction Forces for Multi-Segment Foot Models
,”
J. Biomech.
,
43
(
16
), pp.
3222
3226
.
24.
Remy
,
C. D.
,
2006
,
Integration of an Adaptive Ground Contact Model Into the Dynamic Simulation of Gait
,
University of Wisconsin-Madison
,
Madison, WI
.
25.
Hamner
,
S. R.
,
Seth
,
A.
,
Steele
,
K. M.
, and
Delp
,
S. L.
,
2013
, “
A Rolling Constraint Reproduces Ground Reaction Forces and Moments in Dynamic Simulations of Walking, Running, and Crouch Gait
,”
J. Biomech.
,
46
(
10
), pp.
1772
1776
.
26.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.
27.
Miller
,
R. H.
,
2014
, “
A Comparison of Muscle Energy Models for Simulating Human Walking in Three Dimensions
,”
J. Biomech.
,
47
(
6
), pp.
1373
1381
.
28.
Dorn
,
T. W.
,
Wang
,
J. M.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2015
, “
Predictive Simulation Generates Human Adaptations During Loaded and Inclined Walking
,”
PLoS One
,
10
(
4
), p.
e0121407
.
29.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2015
, “
Foot-Ground Contact Modeling Within Human Gait Simulations: From Kelvin-Voigt to Hyper-Volumetric Models
,”
Multibody Syst. Dyn.
,
35
(
4
), pp.
393
407
.
30.
Cole
,
G. K.
,
Nigg
,
B. M.
,
van den Bogert
,
A. J.
, and
Gerritsen
,
K. G.
,
1996
, “
The Clinical Biomechanics Award Paper 1995 Lower Extremity Joint Loading During Impact in Running
,”
Clin. Biomech. (Bristol, Avon)
,
11
(
4
), pp.
181
193
.
31.
Gerritsen
,
K. G.
,
van den Bogert
,
A. J.
, and
Nigg
,
B. M.
,
1995
, “
Direct Dynamics Simulation of the Impact Phase in Heel-Toe Running
,”
J. Biomech.
,
28
(
6
), pp.
661
668
.
32.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
van den Bogert
,
A. J.
,
2000
, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
4
), pp.
321
334
.
33.
Wilson
,
C.
,
King
,
M. A.
, and
Yeadon
,
M. R.
,
2006
, “
Determination of Subject-Specific Model Parameters for Visco-Elastic Elements
,”
J. Biomech.
,
39
(
10
), pp.
1883
1890
.
34.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.
35.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
36.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2011
, “
Simbody: Multibody Dynamics for Biomedical Research
,”
Proc. IUTAM
,
2
, pp.
241
261
.
37.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.