Stroke caused by an embolism accounts for about a third of all stroke cases. Understanding the source and cause of the embolism is critical for diagnosis and long-term treatment of such stroke cases. The complex nature of the transport of an embolus within large arteries is a primary hindrance to a clear understanding of embolic stroke etiology. Recent advances in medical image-based computational hemodynamics modeling have rendered increasing utility to such techniques as a probe into the complex flow and transport phenomena in large arteries. In this work, we present a novel, patient-specific, computational framework for understanding embolic stroke etiology, by combining image-based hemodynamics with discrete particle dynamics and a sampling-based analysis. The framework allows us to explore the important question of how embolism source manifests itself in embolus distribution across the various major cerebral arteries. Our investigations illustrate prominent numerical evidence regarding (i) the size/inertia-dependent trends in embolus distribution to the brain; (ii) the relative distribution of cardiogenic versus aortogenic emboli among the anterior, middle, and posterior cerebral arteries; (iii) the left versus right brain preference in cardio-emboli and aortic-emboli transport; and (iv) the source–destination relationship for embolisms affecting the brain.

References

References
1.
Di Tullio
,
M. R.
, and
Homma
,
S.
,
2002
, “
Mechanisms of Cardioembolic Stroke
,”
Curr. Cardiol. Rep.
,
4
(
2
), pp.
141
148,
.
2.
Ferro
,
J. M.
,
2003
, “
Cardioembolic Stroke: An Update
,”
Lancet Neurol.
,
2
(
3
), pp.
177
188
.
3.
Kronzon
,
I.
, and
Tunick
,
P. A.
,
2006
, “
Aortic Atherosclerotic Disease and Stroke
,”
Circulation
,
114
(
1
), pp.
63
75
.
4.
Limbruno
,
U.
,
Micheli
,
A.
,
De Carlo
,
M.
,
Amoroso
,
G.
,
Rossini
,
R.
,
Palagi
,
C.
,
Di Bello
,
V.
,
Sonia Petronio
,
A.
,
Fontanini
,
G.
, and
Mariani
,
M.
,
2003
, “
Mechanical Prevention of Distal Embolization During Primary Angioplasty: Safety, Feasibility, and Impact on Myocardial Reperfusion
,”
Circulation
,
108
(
2
), pp.
171
176
.
5.
Chueh
,
J. Y.
,
Kühn
,
A. L.
,
Puri
,
A. S.
,
Wilson
,
S. D.
,
Wakhloo
,
A. K.
, and
Gounis
,
M. J.
,
2013
, “
Reduction in Distal Emboli With Proximal Flow Control During Mechanical Thrombectomy: A Quantitative In Vitro Study
,”
Stroke
,
44
(
5
), pp.
1396
1401
.
6.
Hoffman
,
S. J.
,
Routledge
,
H. C.
, and
Lennon
,
R. J.
,
2012
, “
Procedural Factors Associated With Percutaneous Coronary Intervention-Related Ischemic Stroke
,”
JACC: Cardiovasc. Interventions
,
5
(
2
), pp.
200
206
.
7.
Goodman
,
P. D.
,
Barlow
,
E. T.
,
Crapo
,
P. M.
,
Fazal Mohammad
,
S.
, and
Solen
,
K. A.
,
2005
, “
Computational Model of DeviceInduced Thrombosis and Thromboembolism
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
780
797
.
8.
Arboix
,
A.
, and
Alió
,
J.
,
2010
, “
Cardioembolic Stroke: Clinical Features, Specific Cardiac Disorders and Prognosis
,”
Curr. Cardiol. Rev.
,
6
(
3
), pp.
150
161
.
9.
Sacco
,
R. L.
,
Ellenberg
,
J. H.
,
Mohr
,
J. P.
,
Tatemichi
,
T. K.
,
Hier
,
D. B.
,
Price
,
T. R.
, and
Wolf
,
P. A.
,
1989
, “
Infarcts of Undetermined Cause: The NINCDS Stroke Data Bank
,”
Ann. Neurol.
,
25
(
4
), pp.
382
390
.
10.
Marsh
,
J. D.
, and
Keyrouz
,
S. G.
,
2010
, “
Stroke Prevention and Treatment
,”
J. Am. Coll. Cardiol.
,
56
(
9
), pp.
683
691
.
11.
Ferro
,
J. M.
,
Massaro
,
A. R.
, and
Mas
,
J. L.
,
2010
, “
Aetiological Diagnosis of Ischaemic Stroke in Young Adults
,”
Lancet Neurol.
,
9
(
11
), pp.
1085
1096
.
12.
Mohr
,
J. P.
,
Caplan
,
L. R.
,
Melski
,
J. W.
,
Goldstein
,
R. J.
,
Duncan
,
G. W.
,
Kistler
,
J. P.
,
Pessin
,
M. S.
, and
Bleich
,
H. L.
,
1978
, “
The Harvard Cooperative Stroke Registry. A Prospective Registry
,”
Neurology
,
28
(
8
), pp.
754
754
.
13.
Putaala
,
J.
,
Metso
,
A. J.
,
Metso
,
T. M.
,
Konkola
,
N.
,
Kraemer
,
Y.
,
Haapaniemi
,
E.
,
Kaste
,
M.
, and
Tatlisumak
,
T.
,
2009
, “
Analysis of 1008 Consecutive Patients Aged 15 to 49 With First-Ever Ischemic Stroke: The Helsinki Young Stroke Registry
,”
Stroke
,
40
(
4
), pp.
1195
1203
.
14.
Bogousslavsky
,
J.
,
Van Melle
,
G.
, and
Regli
,
F.
,
1998
, “
The Lausanne Stroke Registry: Analysis of 1,000 Consecutive Patients With First Stroke
,”
Stroke
,
19
(
9
), pp.
1083
1092
.
15.
Smith
,
W. S.
,
Lev
,
M. H.
,
English
,
J. D.
,
Camargo
,
E. C.
,
Chou
,
M.
,
Johnston
,
S. C.
,
Gonzalez
,
G.
,
Schaefer
,
P. W.
,
Dillon
,
W. P.
,
Koroshetz
,
W. J.
, and
Furie
,
K. L.
,
2009
, “
Significance of Large Vessel Intracranial Occlusion Causing Acute Ischemic Stroke and TIA
,”
Stroke
,
40
(
12
), pp.
3834
3840
.
16.
Kim
,
H. J.
,
Song
,
J. M.
,
Kwon
,
S. U.
,
Kim
,
B. J.
,
Kang
,
D. H.
,
Song
,
J. K.
,
Kim
,
J. S.
, and
Kang
,
D. W.
,
2011
, “
Right-Left Propensity and Lesion Patterns Between Cardiogenic and Aortogenic Cerebral Embolisms
,”
Stroke
,
42
(
8
), pp.
2323
2325
.
17.
Macdonald
,
R. L.
,
Kowalczuk
,
A.
, and
Johns
,
L.
,
1995
, “
Emboli Enter Penetrating Arteries of Monkey Brain in Relation to Their Size
,”
Stroke
,
26
(
7
), pp.
1247
1250
.
18.
Rapp
,
J. H.
,
Hollenbeck
,
K.
, and
Pan
,
X. M.
,
2008
, “
An Experimental Model of Lacunar Infarction: Embolization of Microthrombi
,”
J. Vasc. Surg.
,
48
(
1
), pp.
196
200
.
19.
Pollanen
,
M. S.
,
1991
, “
Behaviour of Suspended Particles at Bifurcations: Implications for Embolism
,”
Phys. Med. Biol.
,
36
(
3
), pp.
397
401
.
20.
Bushi
,
D.
,
Grad
,
Y.
,
Einav
,
S.
,
Yodfat
,
O.
,
Nishri
,
B.
, and
Tanne
,
D.
,
2005
, “
Hemodynamic Evaluation of Embolic Trajectory in an Arterial Bifurcation: An In-Vitro Experimental Model
,”
Stroke
,
36
(
12
), pp.
2696
700
.
21.
Chung
,
E. M. L.
,
Hague
,
J. P.
, and
Chanrion
,
M.
,
2010
, “
Embolus Trajectory Through a Physical Replica of the Major Cerebral Arteries
,”
Stroke
,
41
(
4
), pp.
647
652
.
22.
Steinman
,
D. A.
,
2002
, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
483
497
.
23.
Mukherjee
,
D.
,
Padilla
,
J.
, and
Shadden
,
S. C.
,
2015
, “
Numerical Investigation of Fluid–Particle Interactions for Embolic Stroke
,”
Theor. Comput. Fluid Dyn.
,
30
(
1
), pp.
23
39
.
24.
Carr
,
I. A.
,
Nemoto
,
N.
,
Schwartz
,
R. S.
, and
Shadden
,
S. C.
,
2013
, “
Size-Dependent Predilections of Cardiogenic Embolic Transport
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
305
(
5
), pp.
H732
H739
.
25.
Choi
,
H. W.
,
Navia
,
J. A.
, and
Kassab
,
G. S.
,
2013
, “
Stroke Propensity is Increased Under Atrial Fibrillation Hemodynamics: A Simulation Study
,”
PloS One
,
8
(
9
), p.
e73485
.
26.
Fabbri
,
D.
,
Long
,
Q.
,
Das
,
S.
, and
Pinelli
,
M.
,
2014
, “
Computational Modeling of Emboli Travel Trajectories in Cerebral Arteries: Influence of Microembolic Particle Size and Density
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
289
302
.
27.
Simvascular
,
2016
, “
SimVascular
,”
Stanford University
, Stanford, CA.
28.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.
29.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.
30.
Seed
,
W. A.
, and
Wood
,
N. B.
,
1971
, “
Velocity Patterns in the Aorta
,”
Cardiovasc. Res.
,
5
(
3
), pp.
319
330
.
31.
MacDonald
,
M. E.
, and
Frayne
,
R.
,
2015
, “
Phase Contrast MR Imaging Measurements of Blood Flow in Healthy Human Cerebral Vessel Segments
,”
Physiol. Meas.
,
36
(
7
), pp.
1517
1527
.
32.
Zamir
,
M.
,
Sinclair
,
P.
, and
Wonnacott
,
T. H.
,
1992
, “
Relation Between Diameter and Flow in Major Branches of the Arch of the Aorta
,”
J. Biomech.
,
25
(
11
), pp.
1303
1310
.
33.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.
34.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.
35.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1
), pp.
199
259
.
36.
Franca
,
L. P.
,
Frey
,
S. L.
, and
Hughes
,
T. J. R.
,
1992
, “
Stabilized Finite Element Methods: I. Application to the Advective–Diffusive Model
,”
Comput. Methods Appl. Mech. Eng.
,
95
(
2
), pp.
253
276
.
37.
Franca
,
L. P.
, and
Frey
,
S. L.
,
1992
, “
Stabilized Finite Element Methods: II. The Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2
), pp.
209
233
.
38.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1
), pp.
155
196
.
39.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
,
2000
, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3
), pp.
411
430
.
40.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29
), pp.
3776
3796
.
41.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
42.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.
43.
Schroeder
,
W. J.
,
Lorensen
,
B.
, and
Martin
,
K.
,
2004
, “
The Visualization Toolkit
,”
Kitware
, Clifton Park, NY.
44.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.
45.
Kim
,
I.
,
Elghobashi
,
S.
, and
Sirignano
,
W. A.
,
1998
, “
On the Equation for Spherical-Particle Motion: Effect of Reynolds and Acceleration Numbers
,”
J. Fluid Mech.
,
367
(1), pp.
221
253
.
46.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
47.
Mei
,
R.
,
1992
, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
145
147
.
48.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
49.
Saffman
,
P. G. T.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.
50.
Ericson
,
C.
,
2004
,
Real-Time Collision Detection
,
CRC Press
, Boca Raton, FL.
51.
Mukherjee
,
D.
, and
Zohdi
,
T. I.
,
2015
, “
A Discrete Element Based Simulation Framework to Investigate Particulate Spray Deposition Processes
,”
J. Comput. Phys.
,
290
(
1
), pp.
298
317
.
52.
Park
,
K. Y.
,
Kim
,
Y. B.
,
Chung
,
P. W.
,
Moon
,
H. S.
,
Suh
,
B. C.
,
Yoon
,
K. J.
, and
Lee
,
Y. T.
,
2014
, “
Right-Side Propensity of Cardiogenic Emboli in Acute Ischemic Stroke With Atrial Fibrillation
,”
Scand. Cardiovasc. J.
,
48
(
6
), pp.
335
338
.
53.
Patel
,
N.
,
Horsfield
,
M. A.
,
Banahan
,
C.
,
Janus
,
J.
,
Masters
,
K.
,
Morlese
,
J.
,
Egan
,
V.
, and
Chung
,
E. M. L.
,
2015
, “
Impact of Perioperative Infarcts After Cardiac Surgery
,”
Stroke
,
46
(
3
), pp.
680
686
.
54.
Basmadjian
,
D.
,
1990
, “
The Effect of Flow and Mass Transport in Thrombogenesis
,”
Ann. Biomed. Eng.
,
18
(
6
), pp.
685
709
.
55.
Hathcock
,
J. J.
,
2006
, “
Flow Effects on Coagulation and Thrombosis
,”
Arterioscler., Thromb., Vasc. Biol.
,
26
(
8
), pp.
1729
1737
.
56.
Chiu
,
J. J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.
57.
Bark
,
D. L.
,
Para
,
A. N.
, and
Ku
,
D. N.
,
2012
, “
Correlation of Thrombosis Growth Rate to Pathological Wall Shear Rate During Platelet Accumulation
,”
Biotechnol. Bioeng.
,
109
(
10
), pp.
2642
2650
.
58.
Richardson
,
P. D.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
524
536
.
59.
VanderLaan
,
P. A.
,
Reardon
,
C. A.
, and
Getz
,
G. S.
,
2004
, “
Site Specificity of Atherosclerosis: Site-Selective Responses to Atherosclerotic Modulators
,”
Arterioscler., Thromb., Vasc. Biol.
,
24
(
1
), pp.
12
22
.
60.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
,
2004
, “
3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
947
960
.
61.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
.
62.
Fuchs
,
S.
,
2002
, “
Stroke Complicating Percutaneous Coronary Interventions: Incidence, Predictors, and Prognostic Implications
,”
Circulation
,
106
(
1
), pp.
86
91
.
63.
Hamon
,
M.
,
Baron
,
J. C.
,
Viader
,
F.
, and
Hamon
,
M.
,
2008
, “
Periprocedural Stroke and Cardiac Catheterization
,”
Circulation
,
118
(
6
), pp.
678
683
.
64.
Mukherjee
,
D.
,
Zaky
,
Z.
,
Zohdi
,
T. I.
,
Salama
,
A.
, and
Sun
,
S.
,
2015
, “
Investigation of Guided Particle Transport for Noninvasive Healing of Damaged Piping System Using Electro-Magneto-Mechanical Methods
,”
J. Soc. Pet. Eng.
,
20
(
4
), pp.
872
883
.
You do not currently have access to this content.