To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading.

References

1.
Frymoyer
,
J. W.
,
Pope
,
M. H.
,
Costanza
,
M. C.
,
Rosen
,
J. C.
,
Goggin
,
J. E.
, and
Wilder
,
D. G.
,
1980
, “
Epidemiologic Studies of Low-Back Pain
,”
Spine
,
5
(
5
), pp.
419
423
.
2.
Wilder
,
D. G.
,
Pope
,
M. H.
, and
Frymoyer
,
J. W.
,
1988
, “
The Biomechanics of Lumbar Disc Herniation and the Effect of Overload and Instability
,”
J. Spinal Disord.
,
1
(
1
), pp.
16
32
.
3.
Dupuis
,
H.
, and
Zerlett
,
G.
,
1987
, “
Whole-Body Vibration and Disorders of the Spine
,”
Int. Arch. Occup. Environ. Health
,
59
(
4
), pp.
323
336
.
4.
Pope
,
M. H.
,
Wilder
,
D. G.
, and
Magnusson
,
M. L.
,
1999
, “
A Review of Studies on Seated Whole Body Vibration and Low Back Pain
,”
Proc. Inst. Mech. Eng. H
,
213
(
6
), pp.
435
446
.
5.
Hansson
,
T.
,
Magnusson
,
M.
, and
Broman
,
H.
,
1991
, “
Back Muscle Fatigue and Seated Whole Body Vibrations: An Experimental Study in Man
,”
Clin. Biomech.
,
6
(
3
), pp.
173
178
.
6.
Sélard
,
E.
,
Shirazi-Adl
,
A.
, and
Urban
,
J. P. G.
,
2003
, “
Finite Element Study of Nutrient Diffusion in the Human Intervertebral Disc
,”
Spine
,
28
(
17
), pp.
1945
1953
; discussion 1953.
7.
Pope
,
M. H.
,
Magnusson
,
M.
, and
Wilder
,
D. G.
,
1998
, “
Low Back Pain and Whole Body Vibration
,”
Clin. Orthop. Relat. Res.
,
354
, pp.
241
248
.
8.
Cavanaugh
,
J. M.
,
Ozaktay
,
A. C.
,
Yamashita
,
H. T.
, and
King
,
A. I.
,
1996
, “
Lumbar Facet Pain: Biomechanics, Neuroanatomy and Neurophysiology
,”
J. Biomech.
,
29
(
9
), pp.
1117
1129
.
9.
Van der Veen
,
A. J.
,
Mullender
,
M. G.
,
Kingma
,
I.
,
Van
,
J. H.
, and
Smit
,
T. H.
,
2008
, “
Contribution of Verftebral Bodies, Endplates, and Intervertebral Discs to the Compression Creep of Spinal Motion Segments
,”
J. Biomech.
,
41
(
6
), pp.
1260
1268
.
10.
Hill
,
T. E.
,
Desmoulin
,
G. T.
, and
Hunter
,
C. J.
,
2009
, “
Is Vibration Truly an Injurious Stimulus in the Human Spine?
,”
J. Biomech.
,
42
(
16
), pp.
2631
2635
.
11.
Kittusamy
,
N. K.
, and
Buchholz
,
B.
,
2004
, “
Whole-Body Vibration and Postural Stress Among Operators of Construction Equipment: A Literature Review
,”
J. Saf. Res.
,
35
(
3
), pp.
255
261
.
12.
Kitazaki
,
S.
, and
Griffin
,
M. J.
,
1998
, “
Resonance Behaviour of the Seated Human Body and Effects of Posture
,”
J. Biomech.
,
31
(
2
), pp.
143
149
.
13.
Gooyers
,
C. E.
,
McMillan
,
R. D.
,
Howarth
,
S. J.
, and
Callaghan
,
J. P.
,
2012
, “
The Impact of Posture and Prolonged Cyclic Compressive Loading on Vertebral Joint Mechanics
,”
Spine
,
37
(
17
), pp.
E1023
E1029
.
14.
Adams
,
M. A.
,
May
,
S.
,
Freeman
,
B. J.
,
Morrison
,
H. P.
, and
Dolan
,
P.
,
2000
, “
Effects of Backward Bending on Lumbar Intervertebral Discs. Relevance to Physical Therapy Treatments for Low Back Pain
,”
Spine
,
25
(
4
), pp.
431
437
; discussion 438.
15.
Edwards
,
W. T.
,
Ordway
,
N. R.
,
Zheng
,
Y.
,
McCullen
,
G.
,
Han
,
Z.
, and
Yuan
,
H. A.
,
2001
, “
Peak Stresses Observed in the Posterior Lateral Anulus
,”
Spine
,
26
(
16
), pp.
1753
1759
.
16.
Shirazi-Adl
,
A.
, and
Drouin
,
G.
,
1987
, “
Load-Bearing Role of Facets in a Lumbar Segment Under Sagittal Plane Loadings
,”
J. Biomech.
,
20
(
6
), pp.
601
613
.
17.
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1980
, “
The Effect of Posture on the Role of the Apophysial Joints in Resisting Intervertebral Compressive Forces
,”
J. Bone Joint Surg. Br.
,
62
(
3
), pp.
358
362
.
18.
Niosi
,
C. A.
,
Wilson
,
D. C.
,
Zhu
,
Q.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
,
2008
, “
The Effect of Dynamic Posterior Stabilization on Facet Joint Contact Forces: An In Vitro Investigation
,”
Spine
,
33
(
1
), pp.
19
26
.
19.
Hedman
,
T. P.
, and
Fernie
,
G. R.
,
1997
, “
Mechanical Response of the Lumbar Spine to Seated Postural Loads
,”
Spine
,
22
(
7
), pp.
734
743
.
20.
Cheung
,
J. T. M.
,
Zhang
,
M.
, and
Chow
,
D. H. K.
,
2003
, “
Biomechanical Responses of the Intervertebral Joints to Static and Vibrational Loading: A Finite Element Study
,”
Clin. Biomech.
,
18
(
9
), pp.
790
799
.
21.
Kuo
,
C.-S.
,
Hu
,
H.-T.
,
Lin
,
R.-M.
,
Huang
,
K.-Y.
,
Lin
,
P.-C.
,
Zhong
,
Z.-C.
, and
Hseih
,
M.-L.
,
2010
, “
Biomechanical Analysis of the Lumbar Spine on Facet Joint Force and Intradiscal Pressure: A Finite Element Study
,”
BMC Musculoskeletal Disord.
,
11
(
1
), p.
151
.
22.
Schmidt
,
H.
,
Bashkuev
,
M.
,
Dreischarf
,
M.
,
Rohlmann
,
A.
,
Duda
,
G.
,
Wilke
,
H. J.
, and
Shirazi-Adl
,
A.
,
2013
, “
Computational Biomechanics of a Lumbar Motion Segment in Pure and Combined Shear Loads
,”
J. Biomech.
,
46
(
14
), pp.
2513
2521
.
23.
Paddan
,
G. S.
, and
Griffin
,
M. J.
,
1988
, “
The Transmission of Translational Seat Vibration to the Head—I: Vertical Seat Vibration
,”
J. Biomech.
,
21
(
3
), pp.
191
197
.
24.
Keller
,
T. S.
,
Spengler
,
D. M.
, and
Hansson
,
T. H.
,
1987
, “
Mechanical Behavior of the Human Lumbar Spine—I: Creep Analysis During Static Compressive Loading
,”
J. Orthop. Res.
,
5
(
4
), pp.
467
78
.
25.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.
26.
Keller
,
T. S.
,
Holm
,
S. H.
,
Hansson
,
T. H.
, and
Spengler
,
D. M.
,
1990
, “
1990 Volvo Award in Experimental Studies. The Dependence of Intervertebral Disc Mechanical Properties on Physiologic Conditions
,”
Spine
,
15
(
8
), pp.
751
761
.
27.
Smeathers
,
J. E.
,
1984
, “
Some Time Dependent Properties of the Intervertebral Joint When Under Compression
,”
Eng. Med.
,
13
(
2
), pp.
83
87
.
28.
Burns
,
M. L.
,
Kaleps
,
I.
, and
Kazarian
,
L. E.
,
1984
, “
Analysis of Compressive Creep Behavior of the Vertebral Unit Subjected to a Uniform Axial Loading Using Exact Parametric Solution Equations of Kelvin-Solid Models—Part I: Human Intervertebral Joints
,”
J. Biomech.
,
17
(
2
), pp.
113
130
.
29.
Ekström
,
L.
,
Kaigle
,
A.
,
Hult
,
E.
,
Holm
,
S.
,
Rostedt
,
M.
, and
Hansson
,
T.
,
1996
, “
Intervertebral Disc Response to Cyclic Loading—An Animal Model
,”
Proc. Inst. Mech. Eng. H
,
210
(
4
), pp.
249
258
.
30.
Fung
,
Y. C.
, and
Cowin
,
S. C.
,
1994
, “
Biomechanics: Mechanical Properties of Living Tissues, 2nd ed.
,”
ASME J. Appl. Mech.
,
61
(
4
), p.
1007
.
31.
Kaleps
,
I.
,
Kazarian
,
L. E.
, and
Burns
,
M. L.
,
1984
, “
Analysis of Compressive Creep Behavior of the Vertebral Unit Subjected to a Uniform Axial Loading Using Exact Parametric Solution Equations of Kelvin-Solid Models—Part II: Rhesus Monkey Intervertebral Joints
,”
J. Biomech.
,
17
(
2
), pp.
131
136
.
32.
Wei
,
L.
, and
Griffin
,
M. J.
,
1998
, “
Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration
,”
J. Sound Vib.
,
212
(
5
), pp.
855
874
.
33.
Johannessen
,
W.
,
Vresilovic
,
E. J.
,
Wright
,
A. C.
, and
Elliott
,
D. M.
,
2004
, “
Intervertebral Disc Mechanics are Restored Following Cyclic Loading and Unloaded Recovery
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
70
76
.
34.
Johannessen
,
W.
,
Cloyd
,
J. M.
,
O’Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2006
, “
Trans-Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading
,”
Ann. Biomed. Eng.
,
34
(
4
), pp.
687
696
.
35.
O’Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
933
942
.
36.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1999
, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
,
12
(
5
), pp.
415
423
.
37.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand.
,
100
(Suppl.
100
), pp.
1
91
.
38.
Parkinson
,
R. J.
,
Durkin
,
J. L.
, and
Callaghan
,
J. P.
,
2005
, “
Estimating the Compressive Strength of the Porcine Cervical Spine: An Examination of the Utility of DXA
,”
Spine
,
30
(
17
), pp.
E492
E498
.
39.
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force
,”
Clin. Biomech.
,
16
(
1
), pp.
28
37
.
40.
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Low Back Joint Loading and Kinematics During Standing and Unsupported Sitting
,”
Ergonomics
,
44
(
3
), pp.
280
294
.
41.
Panjabi
,
M. M.
,
Andersson
,
G. B.
,
Jorneus
,
L.
,
Hult
,
E.
, and
Mattsson
,
L.
,
1986
, “
In Vivo Measurements of Spinal Column Vibrations
,”
J. Bone Joint Surg. Am.
,
68
(
5
), pp.
695
702
.
42.
Gardner
,
W. A.
,
1992
, “
A Unifying View of Coherence in Signal Processing
,”
Signal Process.
,
29
(
2
), pp.
113
140
.
43.
Quandieu
,
P.
, and
Pellieux
,
L.
,
1982
, “
Study In Situ et In Vivo of the Acceleration of Lumbar Vertebrae of a Primate Exposed to Vibration in the Z-Axis
,”
J. Biomech.
,
15
(
12
), pp.
985
1006
.
44.
Dunlop
,
R. B.
,
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1984
, “
Disc Space Narrowing and the Lumbar Facet Joints
,”
J. Bone Joint Surg. Br.
,
66
(
5
), pp.
706
710
.
45.
Hedman
,
T. P.
, and
Fernie
,
G. R.
,
1995
, “
In Vivo Measurement of Lumbar Spinal Creep in Two Seated Postures Using Magnetic Resonance Imaging
,”
Spine
,
20
(
2
), pp.
178
83
.
46.
Dickey
,
J. P.
, and
Kerr
,
D. J.
,
2003
, “
Effect of Specimen Length: Are the Mechanics of Individual Motion Segments Comparable in Functional Spinal Units and Multisegment Specimens?
,”
Med. Eng. Phys.
,
25
(
3
), pp.
221
227
.
47.
Li
,
S.
,
Patwardhan
,
A. G.
,
Amirouche
,
F. M.
,
Havey
,
R.
, and
Meade
,
K. P.
,
1995
, “
Limitations of the Standard Linear Solid Model of Intervertebral Discs Subject to Prolonged Loading and Low-Frequency Vibration in Axial Compression
,”
J. Biomech.
,
28
(
7
), pp.
779
790
.
48.
Koeller
,
W.
,
Meier
,
W.
, and
Hartmann
,
F.
,
1986
, “
Biomechanical Properties of Human Intervertebral Discs Subjected to Axial Dynamic Compression—Influence of Age and Degeneration
,”
Spine
,
9
(
7
), pp.
725
733
.
49.
McGill
,
S. M.
, and
Brown
,
S.
,
1992
, “
Creep Response of the Lumbar Spine to Prolonged Full Flexion
,”
Clin. Biomech.
,
7
(
1
), pp.
43
46
.
You do not currently have access to this content.