Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI.

References

References
1.
Sekhon
,
L. H.
, and
Fehlings
,
M. G.
,
2001
, “
Epidemiology, Demographics, and Pathophysiology of Acute Spinal Cord Injury
,”
Spine
,
26
(
24 Suppl.
), pp.
S2
S12
.
2.
Maiman
,
D. J.
,
Myklebust
,
J. B.
,
Ho
,
K. C.
, and
Coats
,
J.
,
1989
, “
Experimental Spinal Cord Injury Produced by Axial Tension
,”
J. Spinal Disord.
,
2
(
1
), pp.
6
13
.
3.
Dumont
,
R. J.
,
Okonkwo
,
D. O.
,
Verma
,
S.
,
Hurlbert
,
R. J.
,
Boulos
,
P. T.
,
Ellegala
,
D. B.
, and
Dumont
,
A. S.
,
2001
, “
Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms
,”
Clin. Neuropharmacol.
,
24
(
5
), pp.
254
264
.
4.
Choo
,
A. M.
,
Liu
,
J.
,
Lam
,
C. K.
,
Dvorak
,
M.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2007
, “
Contusion, Dislocation, and Distraction: Primary Hemorrhage and Membrane Permeability in Distinct Mechanisms of Spinal Cord Injury
,”
J. Neurosurg. Spine
,
6
(
3
), pp.
255
266
.
5.
Clarke
,
E. C.
,
Choo
,
A. M.
,
Liu
,
J.
,
Lam
,
C. K.
,
Bilston
,
L. E.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2008
, “
Anterior Fracture-Dislocation is More Severe Than Lateral: A Biomechanical and Neuropathological Comparison in Rat Thoracolumbar Spine
,”
J. Neurotrauma
,
25
(
4
), pp.
371
383
.
6.
Fiford
,
R. J.
,
Bilston
,
L. E.
,
Waite
,
P.
, and
Lu
,
J.
,
2004
, “
A Vertebral Dislocation Model of Spinal Cord Injury in Rats
,”
J. Neurotrauma
,
21
(
4
), pp.
451
458
.
7.
Bono
,
C. M.
,
Vaccaro
,
A. R.
,
Fehlings
,
M.
,
Fisher
,
C.
,
Dvorak
,
M.
,
Ludwig
,
S.
, and
Harrop
,
J.
,
2006
, “
Measurement Techniques for Lower Cervical Spine Injuries: Consensus Statement of the Spine Trauma Study Group
,”
Spine
,
31
(
5
), pp.
603
609
.
8.
Song
,
K. J.
,
Choi
,
B. W.
,
Kim
,
S. J.
,
Kim
,
G. H.
,
Kim
,
Y. S.
, and
Song
,
J. H.
,
2009
, “
The Relationship Between Spinal Stenosis and Neurological Outcome in Traumatic Cervical Spine Injury: An Analysis Using Pavlov's Ratio, Spinal Cord Area, and Spinal Canal Area
,”
Clin. Orthop. Surg.
,
1
(
1
), pp.
11
18
.
9.
Penning
,
L.
,
Wilmink
,
J. T.
,
van Woerden
,
H. H.
, and
Knol
,
E.
,
1986
, “
CT Myelographic Findings in Degenerative Disorders of the Cervical Spine: Clinical Significance
,”
Am. J. Roentgenol.
,
146
(
4
), pp.
793
801
.
10.
Stevens
,
J. M.
,
1995
, “
Imaging of the Spinal Cord
,”
J. Neurol., Neurosurg. Psychiatry
,
58
(
4
), pp.
403
416
.
11.
Fehlings
,
M. G.
, and
Skaf
,
G.
,
1998
, “
A Review of the Pathophysiology of Cervical Spondylotic Myelopathy With Insights for Potential Novel Mechanisms Drawn From Traumatic Spinal Cord Injury
,”
Spine
,
23
(
24
), pp.
2730
2737
.
12.
Kameyama
,
T.
,
Hashizume
,
Y.
,
Ando
,
T.
,
Takahashi
,
A.
,
Yanagi
,
T.
, and
Mizuno
,
J.
,
1995
, “
Spinal Cord Morphology and Pathology in Ossification of the Posterior Longitudinal Ligament
,”
Brain
,
118
(
Pt 1
), pp.
263
278
.
13.
Okada
,
Y.
,
Ikada
,
T.
,
Yamada
,
H.
,
Sakamoto
,
R.
, and
Katoh
,
S.
,
1993
, “
Magnetic Resonance Imaging Study on the Results of Surgery for Cervical Compression Myelopathy
,”
Spine
,
18
(
14
), pp.
2024
2029
.
14.
Bain
,
A. C.
, and
Meaney
,
D. F.
,
2000
, “
Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
615
622
.
15.
Maikos
,
J. T.
,
Qian
,
Z.
,
Metaxas
,
D.
, and
Shreiber
,
D. I.
,
2008
, “
Finite Element Analysis of Spinal Cord Injury in the Rat
,”
J. Neurotrauma
,
25
(
7
), pp.
795
816
.
16.
Russell
,
C. M.
,
Choo
,
A. M.
,
Tetzlaff
,
W.
,
Chung
,
T. E.
, and
Oxland
,
T. R.
,
2012
, “
Maximum Principal Strain Correlates With Spinal Cord Tissue Damage in Contusion and Dislocation Injuries in the Rat Cervical Spine
,”
J. Neurotrauma
,
29
(
8
), pp.
1574
1585
.
17.
Ouyang
,
H.
,
Galle
,
B.
,
Li
,
J.
,
Nauman
,
E.
, and
Shi
,
R.
,
2008
, “
Biomechanics of Spinal Cord Injury: A Multimodal Investigation Using Ex Vivo Guinea Pig Spinal Cord White Matter
,”
J. Neurotrauma
,
25
(
1
), pp.
19
29
.
18.
Li
,
X. F.
, and
Dai
,
L. Y.
,
2009
, “
Three-Dimensional Finite Element Model of the Cervical Spinal Cord: Preliminary Results of Injury Mechanism Analysis
,”
Spine
,
34
(
11
), pp.
1140
1147
.
19.
Persson
,
C.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2011
, “
The Importance of Fluid-Structure Interaction in Spinal Trauma Models
,”
J. Neurotrauma
,
28
(
1
), pp.
113
125
.
20.
Khuyagbaatar
,
B.
,
Kim
,
K.
, and
Kim
,
Y. H.
,
2014
, “
Effects of Bone Fragment Impact on Biomechanical Parameters Related to Spinal Cord Injury: A Finite Element Study
,”
J. Biomech.
,
47
(
11
), pp.
2820
2825
21.
Greaves
,
C. Y.
,
Gadala
,
M. S.
, and
Oxland
,
T. R.
,
2008
, “
A Three-Dimensional Finite Element Model of the Cervical Spine With Spinal Cord: An Investigation of Three Injury Mechanisms
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
396
405
.
22.
Lee
,
S. H.
,
Im
,
Y. J.
,
Kim
,
K. T.
,
Kim
,
Y. H.
,
Park
,
W. M.
, and
Kim
,
K.
,
2011
, “
Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis
,”
Spine
,
36
(
9
), pp.
700
708
.
23.
Ko
,
H. Y.
,
Park
,
J. H.
, and
Baek
,
S. Y.
,
2004
, “
Gross Quantitative Measurements of Spinal Cord Segments in Human
,”
Spinal Cord
,
42
(
1
), pp.
35
40
.
24.
Kameyama
,
T.
,
Hashizume
,
Y.
, and
Sobeu
,
G.
,
1996
, “
Morphologic Features of the Normal Human Cadaveric Spinal Cord
,”
Spine
,
21
(
11
), pp.
1285
1290
.
25.
Holsheimer
,
J.
,
den Boer
,
J. A.
,
Struijk
,
J. J.
, and
Rozeboom
,
A. R.
,
1994
, “
MR Assessment of the Normal Position of the Spinal Cord in the Spinal Canal
,”
Am. J. Neuroradiol.
,
15
(
5
), pp.
951
959
.
26.
Ichihara
,
K.
,
Taguchi
,
T.
,
Shimada
,
Y.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2001
, “
Gray Matter of the Bovine Cervical Spinal Cord is Mechanically More Rigid and Fragile Than the White Matter
,”
J. Neurotrauma
,
18
(
3
), pp.
361
367
.
27.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London A
,
326
(
1567
), pp.
565
584
.
28.
Persson
,
C.
,
Evans
,
S.
,
Marsh
,
R.
,
Summers
,
J. L.
, and
Hall
,
R. M.
,
2010
, “
Poisson's Ratio and Strain Rate Dependency of the Constitutive Behavior of Spinal Dura Mater
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
975
983
.
29.
Brydon
,
H. L.
,
Hayward
,
R.
,
Harkness
,
W.
, and
Bayston
,
R.
,
1995
, “
Physical Properties of Cerebrospinal Fluid of Relevance to Shunt Function 1: The Effect of Protein Upon CSF Viscosity
,”
Br. J. Neurosurg.
,
9
(
5
), pp.
639
644
.
30.
Bloomfield
,
I. G.
,
Johnston
,
I. H.
, and
Bilston
,
L. E.
,
1998
, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
,
28
(
5
), pp.
246
251
.
31.
Wilcox
,
R. K.
,
Boerger
,
T. O.
,
Allen
,
D. J.
,
Barton
,
D. C.
,
Limb
,
D.
,
Dickson
,
R. A.
, and
Hall
,
R. M.
,
2003
, “
A Dynamic Study of Thoracolumbar Burst Fracture
,”
J. Bone Jt. Surg. Am.
85
(
11
), pp.
2184
2189
.
32.
Jones
,
C. F.
,
Kroeker
,
S. G.
,
Cripton
,
P. A.
, and
Hall
,
R. M.
,
2008
, “
The Effect of Cerebrospinal Fluid on the Biomechanics of Spinal Cord: An Ex Vivo Bovine Model Using Bovine and Physical Surrogate Spinal Cord
,”
Spine
,
33
(
17
), pp.
E580
E588
.
33.
Persson
,
C.
,
McLure
,
S. W.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2009
, “
The Effect of Bone Fragment Size and Cerebrospinal Fluid on Spinal Cord Deformation During Trauma: An Ex Vivo Study
,”
J. Neurosurg. Spine
,
10
(
4
), pp.
315
323
.
34.
Wilcox
,
R. K.
,
Allen
,
D. J.
,
Hall
,
R. M.
,
Limb
,
D.
,
Barton
,
D. C.
, and
Dickson
,
R. A.
,
2004
, “
A Dynamic Investigation of the Burst Fracture Process Using a Combined Experimental and Finite Element Approach
,”
Eur. Spine J.
,
13
(
6
), pp.
481
488
.
35.
Meves
,
R.
, and
Avanzi
,
O.
,
2006
, “
Correlation Among Canal Compromise, Neurologic, Deficit, and Injury Severity in Thoracolumbar Burst Fractures
,”
Spine
,
31
(
18
), pp.
2137
2141
.
36.
Aebli
,
N.
,
Rüegg
,
T. B.
,
Wicki
,
A. G.
,
Petrou
,
N.
, and
Krebs
,
J.
,
2013
, “
Predicting the Risk and Severity of Acute Spinal Cord Injury After a Minor Trauma to the Cervical Spine
,”
Spine J.
,
13
(
6
), pp.
597
604
.
37.
Ngo
,
L. M.
,
Aizawa
,
T.
,
Hoshikawa
,
T.
,
Tanaka
,
Y.
,
Sato
,
T.
,
Ishii
,
Y.
, and
Kokubun
,
S.
,
2012
, “
Fracture and Contralateral Dislocation of the Twin Facet Joints of the Lower Cervical Spine
,”
Eur. Spine J.
,
21
(
2
), pp.
282
288
.
38.
Yliniemi
,
E. M.
,
Pellettiere
,
J. A.
,
Doczy
,
E. J.
,
Nuckley
,
D. J.
,
Perry
,
C. E.
, and
Ching
,
R. P.
,
2009
, “
Dynamic Tensile Failure Mechanics of the Musculoskeletal Neck Using a Cadaver Model
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051001
.
39.
Kroeker
,
S. G.
, and
Ching
,
R. P.
,
2013
, “
Coupling Between the Spinal Cord and Cervical Vertebral Column Under Tensile Loading
,”
J. Biomech.
,
46
(
4
), pp.
773
779
.
40.
Choo
,
A. M.
,
Liu
,
J.
,
Liu
,
Z.
,
Dvorak
,
M.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2009
, “
Modeling Spinal Cord Contusion, Dislocation, and Distraction: Characterization of Vertebral Clamps, Injury Severities, and Node of Ranvier Deformations
,”
J. Neurosci. Methods
,
181
(
1
), pp.
6
17
.
41.
Vaccaro
,
A. R.
,
Hulbert
,
J.
,
Patel
,
A. A.
,
Fisher
,
C.
,
Dvorak
,
M.
,
Lehman
,
R. A.
, Jr.
,
Anderson
,
P.
,
Harrop
,
J.
,
Oner
,
F. C.
,
Arnold
,
P.
,
Fehlings
,
M.
,
Hedlund
,
R.
,
Madrazo
,
I.
,
Rechtine
,
G.
,
Aarabi
,
B.
,
Shainline
,
M.
, and
Spine Trauma Study Group
,
2007
, “
The Subaxial Cervical Spine Injury Classification System: A Novel Approach to Recognize the Importance of Morphology, Neurology, and Integrity of the Disco-Ligamentous Complex
,”
Spine
,
32
(
21
), pp.
2365
2374
.
42.
Persson
,
C.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2011
, “
The Effect of Cerebrospinal Fluid Thickness on Traumatic Spinal Cord Deformation
,”
J. Appl. Biomech.
,
27
(
4
), pp.
330
335
.
43.
Hung
,
T. K.
, and
Chang
,
G. L.
,
1981
, “
Biomechanical and Neurological Response of the Spinal Cord of a Puppy to Uniaxial Tension
,”
ASME J. Biomech. Eng.
,
103
(
1
), pp.
43
47
.
44.
Kim
,
Y. H.
,
Khuyagbaatar
,
B.
, and
Kim
,
K.
,
2013
, “
Biomechanical Effects of Spinal Cord Compression Due to Ossification of Posterior Longitudinal Ligament and Ligamentum Flavum: A Finite Element Analysis
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1266
1271
.
45.
Kato
,
Y.
,
Kanchiku
,
T.
,
Imajo
,
Y.
,
Kimura
,
K.
,
Ichihara
,
K.
,
Kawano
,
S.
,
Hamanaka
,
D.
,
Yaji
,
K.
, and
Taguchi
,
T.
,
2010
, “
Biomechanical Study of the Effect of Degree of Static Compression of the Spinal Cord in Ossification of the Posterior Longitudinal Ligament
,”
J. Neurosurg. Spine
,
12
(
3
), pp.
301
305
.
46.
Nishida
,
N.
,
Kato
,
Y.
,
Imajo
,
Y.
,
Kawano
,
S.
, and
Taguchi
,
T.
,
2011
, “
Biomechanical Study of the Spinal Cord in Thoracic Ossification of the Posterior Longitudinal Ligament
,”
J. Spinal Cord Med.
,
34
(
5
), pp.
518
522
.
47.
Galle
,
B.
,
Ouyang
,
H.
,
Shi
,
R.
, and
Nauman
,
E.
,
2010
, “
A Transversely Isotropic Constitutive Model of Excised Guinea Pig Spinal Cord White Matter
,”
J. Biomech.
,
43
(
14
), pp.
2839
2843
.
48.
Sparrey
,
C. J.
, and
Keaveny
,
T. M.
,
2011
, “
Compression Behavior of Porcine Spinal Cord White Matter
,”
J. Biomech.
,
44
(
6
), pp.
1078
1082
.
You do not currently have access to this content.