The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus–valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus–valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus–valgus moment and, thus, reduced the exposure of the tibial post to the external varus–valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry between the tibial post and femoral box.

References

References
1.
Burstein
,
A. H.
, and
Wright
,
T. M.
,
1994
,
Fundamentals of Orthopaedic Biomechanics
,
Williams & Wilkins
,
Baltimore, MA
, pp.
73
86
.
2.
Insall
,
J. N.
,
Lachiewicz
,
P. F.
, and
Burstein
,
A. H.
,
1982
, “
The Posterior Stabilized Condylar Prosthesis: A Modification of the Total Condylar Design: Two to Four-Year Clinical Experience
,”
J. Bone Jt. Surg.
,
64A
, pp.
1317
1323
.
3.
Donaldson
,
W. F.
, III
,
Sculco
,
T. P.
,
Insall
,
J. N.
, and
Ranawat
,
C. S.
,
1988
, “
Total Condylar III Knee Prosthesis. Long-Term Follow-Up Study
,”
Clin. Orthop. Relat. Res.
,
226
, pp.
21
28
.
4.
Lachiewicz
,
P. F.
, and
Soileau
,
E. S.
,
2006
, “
Ten-Year Survival and Clinical Results of Constrained Components in Primary Total Knee Arthroplasty
,”
J. Arthroplasty
,
21
(
6
), pp.
803
808
.
5.
Anderson
,
J. A.
,
Baldini
,
A.
,
MacDonald
,
J. H.
,
Tomek
,
I.
,
Pellicci
,
P. M.
, and
Sculco
,
T. P.
,
2007
, “
Constrained Condylar Knee Without Stem Extensions for Difficult Primary Total Knee Arthroplasty
,”
J. Knee Surg.
,
20
, pp.
195
198
.
6.
Kim
,
Y. H.
, and
Kim
,
J. S.
,
2009
, “
Revision Total Knee Arthroplasty With Use of a Constrained Condylar Knee Prosthesis
,”
J. Bone Joint Surg. Am.
,
91
(
6
), pp.
1440
1447
.
7.
Puloski
,
S. K.
,
McCalden
,
R. W.
,
MacDonald
,
S. J.
,
Rorabeck
,
C. H.
, and
Bourne
,
R. B.
,
2001
, “
Tibial Post Wear in Posterior Stabilized Total Knee Arthroplasty: An Unrecognized Source of Polyethylene Debris
,”
J. Bone Joint Surg. Am.
,
83
(3), pp.
390
397
.
8.
Haider
,
H.
, and
Walker
,
P. S.
,
2005
, “
Measurements of Constraint of Total Knee Replacement
,”
J. Biomech.
,
38
(
2
), pp.
341
348
.
9.
Grigg
,
P.
,
Hoffman
,
A. H.
,
Robichaud
,
D. R.
, II
, and
Duquette
,
J. J.
,
2005
, “
Determining the Effect of Hydration Upon the Properties of Ligaments Using Pseudo Gaussian Stress Stimuli
,”
J. Biomech.
,
38
(
8
), pp.
1636
1642
.
10.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.
11.
Olcott
,
C. W.
, and
Scott
,
R. D.
,
2000
, “
A Comparison of 4 Intraoperative Methods to Determine Femoral Component Rotation During Total Knee Arthroplasty
,”
J. Arthroplasty
,
15
(
1
), pp.
22
26
.
12.
Whiteside
,
L. A.
,
2002
, “
Soft Tissue Balancing: The Knee
,”
J. Arthroplasty
,
17
(
Suppl. 1
), pp.
23
27
.
13.
Prisk
,
V. R.
,
Imhauser
,
C. W.
,
O'Loughlin
,
P. F.
, and
Kennedy
,
J. G.
,
2010
, “
Lateral Ligament Repair and Reconstruction Restore Neither Contact Mechanics of the Ankle Joint nor Motion Patterns of the Hinkfoot
,”
J. Bone Jt. Surg.
,
92
(
14
), pp.
2375
2386
.
14.
Imhauser
,
C.
,
Mauro
,
C.
,
Choi
,
D.
,
Rosenberg
,
E.
,
Mathew
,
S.
,
Nguyen
,
J.
,
Ma
,
Y.
, and
Wickiewicz
,
T.
,
2013
, “
Abnormal Tibiofemoral Contact Stress and Its Association With Altered Kinematics After Center–Center Anterior Cruciate Ligament Reconstruction: An In Vitro Study
,”
Am. J. Sports Med.
,
41
(
4
), pp.
815
825
.
15.
Grood
,
E. S.
, and
Sunday
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
16.
Andriacchi
,
T. P.
,
Mündermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
, and
Colwell
,
C. W.
, Jr.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.
17.
Rowe
,
P. J.
,
Myles
,
C. M.
,
Walker
,
C.
, and
Nutton
,
R.
,
2000
, “
Knee Joint Kinematics in Gait and Other Functional Activities Measured Using Flexible Electrogoniometry: How Much Motion is Sufficient for Normal Daily Life?
Gait Posture
,
12
(
2
), pp.
143
155
.
18.
Bergmann
,
G.
,
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
, and
Beier
,
A.
,
2009
, “
Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured In Vivo With a Follow-Up of 6–10 Months
,”
Clin. Biomech.
,
24
(
4
), pp.
315
326
.
19.
Kitaoka
,
H. B.
,
Crevoisier
,
X. M.
,
Hansen
,
D.
,
Katajarvi
,
B.
,
Harbst
,
K.
, and
Kaufman
,
K. R.
,
2006
, “
Foot and Ankle Kinematics and Ground Reaction Forces During Ambulation
,”
Foot Ankle Int.
,
27
(10), pp.
808
813
.
20.
Hunt
,
A. E.
,
Smith
,
R. M.
,
Torode
,
M.
, and
Keenan
,
A.-M.
,
2001
, “
Inter-Segment Foot Motion and Ground Reaction Forces Over the Stance Phase of Walking
,”
Clin. Biomech.
,
16
(
7
), pp.
592
600
.
21.
Bogert
,
A. J.
,
Barsoum
,
W. K.
,
Lee
,
H. H.
,
Murray
,
T. G.
,
Golbrunn
,
R.
,
Klika
,
A. K.
, and
Sutler
,
S.
,
2011
, “
Robotic Testing of Proximal Tibio-Fibular Joint Kinematics for Measuring Instability Following Total Knee Arthroplasty
,”
J. Orthop. Res.
,
29
(
1
), pp.
47
52
.
22.
Li
,
G.
,
Varadarajan
,
K. M.
,
Moynihan
,
A. L.
,
D'Lima
,
D.
, and
Colwell
,
C. W.
,
2008
, “
In Vivo Contact Kinematics and Contact Forces of the Knee After Total Knee Arthroplasty During Dynamic Weight-Bearing Activities
,”
J. Biomech.
,
41
(
10
), pp.
2159
2168
.
23.
Wang
,
X.
,
Malik
,
A.
,
Bartel
,
D. L.
,
Wickiewicz
,
T. L.
, and
Wright
,
T. M.
,
2014
, “
Asymmetric Varus and Valgus Stability of the Anatomic Cadaver Knee and the Load Sharing Between Collateral Ligaments and Bearing Surfaces
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
081005
.
24.
Mündermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Andriacchi
,
T. P.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.
25.
Li
,
G.
,
DeFrate
,
L. E.
,
Zayontz
,
S.
,
Park
,
S. E.
, and
Gill
,
T. J.
,
2004
, “
The Effect of Tibiofemoral Joint Kinematics on Patellofemoral Contact Pressures Under Simulated Muscle Loads
,”
J. Orthop. Res.
,
22
(
4
), pp.
801
806
.
26.
Sim
,
J. A.
,
Gadikota
,
H. R.
,
Li
,
J. S.
,
Li
,
G.
, and
Gill
,
T. J.
,
2011
, “
Biomechanical Evaluation of Knee Joint Laxities and Graft Forces After Anterior Cruciate Ligament Reconstruction by Anteromedial Portal, Outside-In, and Transtibial Techniques
,”
Am. J. Sports Med.
,
39
(
12
), pp.
2604
2610
.
You do not currently have access to this content.