Biological tissues are typically constituted of dispersed fibers. Modeling the constitutive laws of such tissues remains a challenge. Direct integration over all fibers is considered to be accurate but requires very expensive numerical integration. A general structure tensor (GST) model was previously developed to bypass this costly numerical integration step, but there are concerns about the model's accuracy. Here we estimate the approximation error of the GST model. We further reveal that the GST model ignores strain energy induced by shearing motions. Subsequently, we propose a new characteristic-based constitutive law to better approximate the direct integration model. The new model is very cost-effective and closely approximates the “true” strain energy as calculated by the direct integration when stress–strain nonlinearity or fiber dispersion angle is small.

References

References
1.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Philos. Trans. R. Soc. London A
,
367
(
1902
), pp.
3445
3475
.
2.
Wong
,
V. M.
,
Wenk
,
J. F.
,
Zhang
,
Z.
,
Cheng
,
G.
,
Acevedo-Bolton
,
G.
,
Burger
,
M.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
,
Guccione
,
J. M.
,
Ratcliffe
,
M. B.
, and
Ge
,
L.
,
2012
, “
The Effect of Mitral Annuloplasty Shape in Ischemic Mitral Regurgitation: A Finite Element Simulation
,”
Ann. Thorac. Surg.
,
93
(
3
), pp.
776
782
.
3.
Genet
,
M.
,
Lee
,
L. C.
,
Nguyen
,
R.
,
Haraldsson
,
H.
,
Acevedo-Bolton
,
G.
,
Zhang
,
Z.
,
Ge
,
L.
,
Ordovas
,
K.
,
Kozerke
,
S.
, and
Guccione
,
J. M.
,
2014
, “
Distribution of Normal Human Left Ventricular Myofiber Stress at End Diastole and End Systole: A Target for In Silico Design of Heart Failure Treatments
,”
J. Appl. Physiol.
,
117
(
2
), pp.
142
152
.
4.
Ferruzzi
,
J.
,
Vorp
,
D. A.
, and
Humphrey
,
J. D.
,
2011
, “
On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms
,”
J. R. Soc. Interface
,
8
(
56
), pp.
435
450
.
5.
Riveros
,
F.
,
Martufi
,
G.
,
Gasser
,
T. C.
, and
Rodriguez-Matas
,
J. F.
,
2015
, “
On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
1
12
.
6.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2014
, “
The Effect of Uncertainty in Vascular Wall Material Properties on Abdominal Aortic Aneurysm Wall Mechanics
,”
Computational Biomechanics for Medicine
,
Springer
,
Berlin
, pp.
69
86
.
7.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.
8.
Yucesoy
,
C. A.
,
Koopman
,
B. H.
,
Huijing
,
P. A.
, and
Grootenboer
,
H. J.
,
2002
, “
Three-Dimensional Finite Element Modeling of Skeletal Muscle Using a Two-Domain Approach: Linked Fiber-Matrix Mesh Model
,”
J. Biomech.
,
35
(
9
), pp.
1253
1262
.
9.
Miller
,
K.
, and
Chinzei
,
K.
,
2002
, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
,
35
(
4
), pp.
483
490
.
10.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
11.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
A New Constitutive Model for Multi-Layered Collagenous Tissues
,”
J. Biomech.
,
41
(
12
), pp.
2766
2771
.
12.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
13.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
14.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
15.
Cortes
,
D. H.
,
Lake
,
S. P.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
,
2010
, “
Characterizing the Mechanical Contribution of Fiber Angular Distribution in Connective Tissue: Comparison of Two Modeling Approaches
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
651
658
.
16.
Einstein
,
D. R.
,
2002
, “
Nonlinear Acoustic Analysis of the Mitral Valve
,”
Ph.D. thesis
, University of Washington, Seattle, WA.
17.
Freed
,
A. D.
,
Einstein
,
D. R.
, and
Vesely
,
I.
,
2005
, “
Invariant Formulation for Dispersed Transverse Isotropy in Aortic Heart Valves
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
100
117
.
18.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
19.
Holder
,
O.
,
1889
, “
Uber Einen Mittelwertssatz
,”
Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl
,
2
, pp.
38
47
.
20.
Stein
,
W. A.
,
Abbott
,
T.
, and
Abshoff
,
M.
,
2012
, “
SageMath
,” http://www.sagemath.org/
21.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2009
, “
A Closed-Form Structural Model of Planar Fibrous Tissue Mechanics
,”
J. Biomech.
,
42
(
10
), pp.
1424
1428
.
22.
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2009
, “
On Parameter Estimation for Biaxial Mechanical Behavior of Arteries
,”
J. Biomech.
,
42
(
4
), pp.
524
530
.
23.
Rodríguez
,
J. F.
,
Martufi
,
G.
,
Doblaré
,
M.
, and
Finol
,
E. A.
,
2009
, “
The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2218
2221
.
24.
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2012
, “
3D Constitutive Modeling of the Biaxial Mechanical Response of Intact and Layer-Dissected Human Carotid Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
116
128
.
25.
Karlon
,
W. J.
,
Covell
,
J. W.
,
Mcculloch
,
A. D.
,
Hunter
,
J. J.
, and
Omens
,
J. H.
,
1998
, “
Automated Measurement of Myofiber Disarray in Transgenic Mice With Ventricular Expression of RAS
,”
Anat. Rec.
,
252
(
4
), pp.
612
625
.
26.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Dixon
,
J. G.
,
Boughner
,
D. R.
, and
Chen
,
A.
,
1989
, “
Measurements From Light and Polarised Light Microscopy of Human Coronary Arteries Fixed at Distending Pressure
,”
Cardiovasc. Res.
,
23
(
11
), pp.
973
982
.
27.
Rezakhaniha
,
R.
,
Agianniotis
,
A.
,
Schrauwen
,
J. T. C.
,
Griffa
,
A.
,
Sage
,
D.
,
Bouten
,
C. V. C.
,
Van de Vosse
,
F. N.
,
Unser
,
M.
, and
Stergiopulos
,
N.
,
2012
, “
Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
461
473
.
28.
Gasser
,
T. C.
,
Gallinetti
,
S.
,
Xing
,
X.
,
Forsell
,
C.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2012
, “
Spatial Orientation of Collagen Fibers in the Abdominal Aortic Aneurysm's Wall and Its Relation to Wall Mechanics
,”
Acta Biomater.
,
8
(
8
), pp.
3091
3103
.
29.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
30.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2006
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.
You do not currently have access to this content.