Many vascular disorders, including aortic aneurysms and dissections, are characterized by localized changes in wall composition and structure. Notwithstanding the importance of histopathologic changes that occur at the microstructural level, macroscopic manifestations ultimately dictate the mechanical functionality and structural integrity of the aortic wall. Understanding structure–function relationships locally is thus critical for gaining increased insight into conditions that render a vessel susceptible to disease or failure. Given the scarcity of human data, mouse models are increasingly useful in this regard. In this paper, we present a novel inverse characterization of regional, nonlinear, anisotropic properties of the murine aorta. Full-field biaxial data are collected using a panoramic-digital image correlation (p-DIC) system. An inverse method, based on the principle of virtual power (PVP), is used to estimate values of material parameters regionally for a microstructurally motivated constitutive relation. We validate our experimental–computational approach by comparing results to those from standard biaxial testing. The results for the nondiseased suprarenal abdominal aorta from apolipoprotein-E null mice reveal material heterogeneities, with significant differences between dorsal and ventral as well as between proximal and distal locations, which may arise in part due to differential perivascular support and localized branches. Overall results were validated for both a membrane and a thick-wall model that delineated medial and adventitial properties. Whereas full-field characterization can be useful in the study of normal arteries, we submit that it will be particularly useful for studying complex lesions such as aneurysms, which can now be pursued with confidence given the present validation.

References

References
1.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2011
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.
2.
Martufi
,
G.
,
Gasser
,
T. C.
,
Appoo
,
J.
, and
Di Martino
,
E. S.
,
2014
, “
Mechano-Biology in the Thoracic Aortic Aneurysm: A Review and Case Study
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
917
928
.
3.
Moireau
,
P.
,
Xiao
,
N.
,
Astorino
,
M.
,
Figueroa
,
C. A.
,
Chapelle
,
D.
,
Taylor
,
C. A.
, and
Gerbeau
,
J. F.
,
2012
, “
External Tissue Support and Fluid-Structure Simulation in Blood Flows
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
1
18
.
4.
Chandra
,
S.
,
Jana
,
A.
,
Biederman
,
R. W.
, and
Doyle
,
M.
,
2013
, “
Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081001
.
5.
Alimohammadi
,
M.
,
Sherwood
,
J. M.
,
Karimpour
,
M.
,
Agu
,
O.
,
Balabani
,
S.
, and
Díaz-Zuccarini
,
V.
,
2015
, “
Aortic Dissection Simulation Models for Clinical Support: Fluid-Structure Interaction vs. Rigid Wall Models
,”
Biomed. Eng. Online
,
14
(
1
), pp.
1
16
.
6.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.
7.
Bersi
,
M. R.
,
Ferruzzi
,
J.
,
Eberth
,
J. F.
,
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2014
, “
Consistent Biomechanical Phenotyping of Common Carotid Arteries From Seven Genetic, Pharmacological, and Surgical Mouse Models
,”
Ann. Biomed. Eng.
,
42
(
6
), pp.
1207
1223
.
8.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2004
, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
–795.
9.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.
10.
Genovese
,
K.
,
Lee
,
Y.-U.
,
Lee
,
A. Y.
, and
Humphrey
,
J. D.
,
2013
, “
An Improved Panoramic Digital Image Correlation Method for Vascular Strain Analysis and Material Characterization
,”
J. Mech. Behav. Biomed. Mater.
,
27
, pp.
132
142
.
11.
Genovese
,
K.
,
2009
, “
A Video-Optical System for Time-Resolved Whole-Body Measurement on Vascular Segments
,”
Opt. Lasers Eng.
,
47
(
9
), pp.
995
1008
.
12.
Van Loon
,
P.
,
Klip
,
W.
, and
Bradley
,
E. L.
,
1977
, “
Length-Force and Volume-Pressure Relationships of Arteries
,”
Biorheology
,
14
(
4
), pp.
181
201
.
13.
Kang
,
T.
,
Resar
,
J.
, and
Humphrey
,
J. D.
,
1995
, “
Heat-Induced Changes in the Mechanical Behavior of Passive Coronary Arteries
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
86
93
.
14.
Bellini
,
C.
,
Ferruzzi
,
J.
,
Roccabianca
,
S.
,
Di Martino
,
E. S.
, and
Humphrey
,
J. D.
,
2014
, “
A Microstructurally Motivated Model of Arterial Wall Mechanics With Mechanobiological Implications
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
488
502
.
15.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2015
, “
Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031007
.
16.
Humphrey
,
J.
, and
Rajagopal
,
K.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.
17.
Pierron
,
F.
, and
Grédiac
,
M.
,
2012
,
The Virtual Fields Method: Extracting Constitutive Mechanical Parameters From Full-Field Deformation Measurements
,
Springer
,
New York
.
18.
Avril
,
S.
,
Bonnet
,
M.
,
Bretelle
,
A. S.
,
Grédiac
,
M.
,
Hild
,
F.
,
Ienny
,
P.
,
Latourte
,
F.
,
Lemosse
,
D.
,
Pagano
,
S.
,
Pagnacco
,
E.
, and
Pierron
,
F.
,
2008
, “
Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements
,”
Exp. Mech.
,
48
(
4
), pp.
381
402
.
19.
Avril
,
S.
,
Badel
,
P.
, and
Duprey
,
A.
,
2010
, “
Anisotropic and Hyperelastic Identification of In Vitro Human Arteries From Full-Field Optical Measurements
,”
J. Biomech.
,
43
(
15
), pp.
2978
2985
.
20.
Cuomo
,
F.
,
Ferruzzi
,
J.
,
Humphrey
,
J. D.
, and
Figueroa
,
C. A.
,
2015
, “
An Experimental–Computational Study of Catheter Induced Alterations in Pulse Wave Velocity in Anesthetized Mice
,”
Ann. Biomed. Eng
,
43
(
7
), pp.
1555
1570
.
21.
Antiga
,
L.
, and
Steinman
,
D. A.
,
2004
, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
,
23
(
6
), pp.
704
713
.
22.
Baek
,
S.
,
Gleason
,
R.
,
Rajagopal
,
K.
, and
Humphrey
,
J.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid–Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.
23.
Stålhand
,
J.
,
2009
, “
Determination of Human Arterial Wall Parameters From Clinical Data
,”
Biomech. Model. Mechanobiol.
,
8
(
2
), pp.
141
148
.
24.
Smoljkić
,
M.
,
Vander Sloten
,
J.
,
Segers
,
P.
, and
Famaey
,
N.
,
2015
, “
Non-Invasive, Energy-Based Assessment of Patient-Specific Material Properties of Arterial Tissue
,”
Biomech. Model. Mechanobiol.
,
14
(
5
), pp.
1045
1056
.
25.
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
,
Vorp
,
D. A.
, and
Baek
,
S.
,
2011
, “
Identification of in vivo Material and Geometric Parameters of a Human Aorta: Toward Patient-Specific Modeling of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
689
699
.
26.
Reeps
,
C.
,
Maier
,
A.
,
Pelisek
,
J.
,
Härtl
,
F.
,
Grabher-Meier
,
V.
,
Wall
,
W. A.
,
Essler
,
M.
,
Eckstein
,
H. H.
, and
Gee
,
M. W.
,
2013
, “
Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall
,”
Biomech. Mode1l. Mechanobiol.
,
12
(
4
), pp.
717
733
.
27.
Agrawal
,
V.
,
Kollimada
,
S. A.
,
Byju
,
A. G.
, and
Gundiah
,
N.
,
2013
, “
Regional Variations in the Nonlinearity and Anisotropy of Bovine Aortic Elastin
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1181
1194
.
28.
Horný
,
L.
,
Netušil
,
M.
, and
Voňavková
,
T.
,
2013
, “
Axial Prestretch and Circumferential Distensibility in Biomechanics of Abdominal Aorta
,”
Biomech. Model. Mechanobiol.
,
13
(
4
), pp.
783
799
.
29.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Kazmi
,
S. A. J.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
N. Y.
,
Herber
,
K.
,
Woodford
,
T.
,
Bowen
,
R. E.
,
Lomneth
,
C. S.
, and
MacTaggart
,
J. N.
,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal and Common Iliac Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1341
1359
.
30.
Tonar
,
Z.
,
Kochova
,
P.
,
Cimrman
,
R.
,
Perktold
,
J.
, and
Witter
,
K.
,
2015
, “
Segmental Differences in the Orientation of Smooth Muscle Cells in the Tunica Media of Porcine Aortae
,”
Biomech. Model. Mechanobiol.
,
14
(
2
), pp.
315
332
.
31.
Ferruzzi
,
J.
,
Vorp
,
D. A.
, and
Humphrey
,
J. D.
,
2011
, “
On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms
,”
J. R. Soc. Interface
,
8
(
56
), pp.
435
450
.
32.
Roccabianca
,
S.
,
Figueroa
,
C. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2013
, “
Quantification of Regional Differences in Aortic Stiffness in the Aging Human
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
618
634
.
33.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2004
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.
34.
García-Herrera
,
C. M.
,
Celentano
,
D. J.
,
Cruchaga
,
M. A.
,
Rojo
,
F. J.
,
Atienza
,
J. M.
,
Guinea
,
G. V.
, and
Goicolea
,
J. M.
,
2012
, “
Mechanical Characterisation of the Human Thoracic Descending Aorta: Experiments and Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
2
), pp.
185
193
.
35.
Genovese
,
K.
,
Lee
,
Y. U.
, and
Humphrey
,
J. D.
,
2011
, “
Novel Optical System for In Vitro Quantification of Full Surface Strain Fields in Small Arteries—I: Theory and Design
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
3
), pp.
213
225
.
36.
Genovese
,
K.
,
Lee
,
Y. U.
, and
Humphrey
,
J. D.
,
2011
, “
Novel Optical System for In Vitro Quantification of Full Surface Strain Fields in Small Arteries—II: Correction for Refraction and Illustrative Results
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
3
), pp.
227
237
.
37.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(1), pp.
1
48
.
38.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues and Organs
,
Springer
,
New York
.
39.
Han
,
H. C.
,
2007
, “
A Biomechanical Model of Artery Buckling
,”
J. Biomech.
,
40
(
16
), pp.
3672
3678
.
40.
Watton
,
P. N.
, and
Hill
,
N. A.
,
2009
, “
Evolving Mechanical Properties of a Model of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
25
42
.
41.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2013
, “
Parametric Study of Effects of Collagen Turnover on the Natural History of Abdominal Aortic Aneurysms
,”
Proc. Math. Phys. Eng. Sci.
,
469
(
2150
), p.
20120556
.
42.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
Impact of Calcifications on Patient-Specific Wall Stress Analysis of Abdominal Aortic Aneurysms
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
511
521
.
43.
Roccabianca
,
S.
,
Ateshian
,
G. A.
, and
Humphrey
,
J. D.
,
2014
, “
Biomechanical Roles of Medial Pooling of Glycosaminoglycans in Thoracic Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
13
25
.
You do not currently have access to this content.