In finite-element (FE) models of the knee joint, patella is often omitted. We investigated the importance of patella and quadriceps forces on the knee joint motion by creating an FE model of the subject's knee. In addition, depthwise strains and stresses in patellar cartilage with different tissue properties were determined. An FE model was created from subject's magnetic resonance images. Knee rotations, moments, and translational forces during gait were recorded in a motion laboratory and used as an input for the model. Three material models were implemented into the patellar cartilage: (1) homogeneous model, (2) inhomogeneous (arcadelike fibrils), and (3) random fibrils at the superficial zone, mimicking early stages of osteoarthritis (OA). Implementation of patella and quadriceps forces into the model substantially reduced the internal–external femoral rotations (versus without patella). The simulated rotations in the model with the patella matched the measured rotations at its best. In the inhomogeneous model, maximum principal stresses increased substantially in the middle zone of the cartilage. The early OA model showed increased compressive strains in the superficial and middle zones of the cartilage and decreased stresses and fibril strains especially in the middle zone. The results suggest that patella and quadriceps forces should be included in moment- and force-driven FE knee joint models. The results indicate that the middle zone has a major role in resisting shear forces in the patellar cartilage. Also, early degenerative changes in the collagen network substantially affect the cartilage depthwise response in the patella during walking.

References

References
1.
Ahmed
,
A. M.
,
Burke
,
D. L.
, and
Hyder
,
A.
,
1987
, “
Force Analysis of the Patellar Mechanism
,”
J. Orthop. Res.
,
5
(
1
), pp.
69
85
.
2.
Arokoski
,
J. P. A.
,
Jurvelin
,
J. S.
,
Väätäinen
,
U.
, and
Helminen
,
H. J.
,
2000
, “
Normal and Pathological Adaptations of Articular Cartilage to Joint Loading
,”
Scand. J. Med. Sci. Sports
,
10
(
4
), pp.
186
198
.
3.
Hosseini
,
A.
,
Van de Velde
,
S. K.
,
Kozanek
,
M.
,
Gill
,
T. J.
,
Grodzinsky
,
A. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2010
, “
In-Vivo Time-Dependent Articular Cartilage Contact Behavior of the Tibiofemoral Joint
,”
Osteoarthritis Cartilage
,
18
(
7
), pp.
909
916
.
4.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.
5.
Bergmann
,
G.
,
Bender
,
A.
,
Graichen
,
F.
,
Dymke
,
J.
,
Rohlmann
,
A.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Kutzner
,
I.
,
2014
, “
Standardized Loads Acting in Knee Implants
,”
PLoS One
,
9
(
1
), pp.
1
12
.
6.
Bingham
,
J. T.
,
Papannagari
,
R.
,
Van de Velde
,
S. K.
,
Gross
,
C.
,
Gill
,
T. J.
,
Felson
,
D. T.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2008
, “
In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint
,”
Rheumatology
,
47
(
11
), pp.
1622
1627
.
7.
Halonen
,
K. S.
,
Mononen
,
M. E.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
,
Salo
,
J.
, and
Korhonen
,
R. K.
,
2014
, “
Deformation of Articular Cartilage During Static Loading of a Knee Joint—Experimental and Finite Element Analysis
,”
J. Biomech.
,
47
(
10
), pp.
2467
2474
.
8.
Mootanah
,
R.
,
Imhauser
,
C. W.
,
Reisse
,
F.
,
Carpanen
,
D.
,
Walker
,
R. W.
,
Koff
,
M. F.
,
Lenhoff
,
M. W.
,
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
,
Dewan
,
Z.
,
Kirane
,
Y. M.
,
Cheah
,
K.
,
Dowell
,
J. K.
, and
Hillstrom
,
H. J.
,
2014
, “
Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
13
), pp.
1502
1517
.
9.
Aksbarshahi
,
M.
,
Fernandez
,
J. W.
,
Schache
,
A. G.
, and
Pandy
,
M. G.
,
2014
, “
Subject-Specific Evaluation of Patellofemoral Joint Biomechanics During Functional Activity
,”
Med. Eng. Phys.
,
36
(
4
), pp.
1122
1133
.
10.
Adouni
,
M.
, and
Shirazi-Adl
,
A.
,
2014
, “
Partitioning of the Knee Joint Internal Forces in Gait is Dictated by the Knee Adduction Angle and not by the Knee Adduction Moment
,”
J. Biomech.
,
47
(
7
), pp.
1696
1703
.
11.
Tanska
,
P.
,
Mononen
,
M. E.
, and
Korhonen
,
R. K.
,
2015
, “
A Multi-Scale Finite Element Model for Investigation of Chondrocyte Mechanics in Normal and Medial Meniscectomy Human Knee Joint During Walking
,”
J. Biomech.
,
48
(
8
), pp.
1397
1406
.
12.
Mononen
,
M. E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2015
, “
Implementation of a Gait Cycle Loading Into Healthy and Meniscectomised Knee Joint Models With Fibril-Reinforced Articular Cartilage
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
2
), pp.
141
152
.
13.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C.
, and
Sum
,
J.
,
1998
, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
743
749
.
14.
Kaufman
,
K. R.
,
Hughes
,
C.
,
Morrey
,
B. F.
,
Morrey
,
M.
, and
An
,
K.
,
2001
, “
Gait Characteristics of Patients With Knee Osteoarthritis
,”
J. Biomech.
,
34
(
7
), pp.
907
915
.
15.
Ferber
,
R.
,
Osternig
,
L. R.
,
Woollacott
,
M. H.
,
Wasielewski
,
N. J.
, and
Lee
,
J.
,
2002
, “
Gait Mechanics in Chronic ACL Deficiency and Subsequent Repair
,”
Clin. Biomech.
,
17
(
4
), pp.
274
285
.
16.
Dyrby
,
C. O.
, and
Andriacchi
,
T. P.
,
2004
, “
Secondary Motions of the Knee During Weight Bearing and Non-Weight Bearing Activities
,”
J. Orthop. Res.
,
22
(
4
), pp.
794
800
.
17.
Torry
,
M. R.
,
Decker
,
M. J.
,
Ellis
,
H. B.
, and
Shelburne
,
K. B.
,
2004
, “
Mechanisms of Compensating for Anterior Cruciate Ligament Deficiency During Gait
,”
Med. Sci. Sports Exercise
,
36
(
8
), pp.
1403
1412
.
18.
Kulmala
,
J.
,
Äyrämö
,
S.
, and
Avela
,
J.
,
2013
, “
Knee Extensor and Flexor Dominant Gait Patterns Increase the Knee Frontal Plane Moment During Walking
,”
J. Orthop. Res.
,
31
(
7
), pp.
1013
1019
.
19.
Veldpaus
,
F. E.
,
Woltring
,
H. J.
, and
Dortmans
,
L. J. M. G.
,
1988
, “
A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates
,”
J. Biomech.
,
21
(
1
), pp.
45
54
.
20.
Söderkvist
,
I.
, and
Wedin
,
P.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.
21.
Papannagari
,
R.
,
Gill
,
T. J.
,
DeFrate
,
L. E.
,
Moses
,
J. M.
,
Petruska
,
A. J.
, and
Li
,
G.
,
2006
, “
In Vivo Kinematics of the Knee After Anterior Cruciate Ligament Reconstruction: A Clinical and Functional Evaluation
,”
Am. J. Sports Med.
,
34
(
12
), pp.
2006
2012
.
22.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
,
J. T.
,
2008
, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
7
), pp.
1616
1622
.
23.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.
24.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
,
Palanca
,
D.
, and
Doblaré
,
M.
,
2005
, “
Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics
,”
Clin. Biomech.
,
20
(
5
), pp.
498
507
.
25.
Mononen
,
M. E.
,
Mikkola
,
M. T.
,
Julkunen
,
P.
,
Ojala
,
R.
,
Nieminen
,
M. T.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2012
, “
Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics—A 3D Finite Element Analysis
,”
J. Biomech.
,
45
(
3
), pp.
579
587
.
26.
Gu
,
K. B.
, and
Li
,
L. P.
,
2011
, “
A Human Knee Joint Model Considering Fluid Pressure and Fiber Orientation in Cartilages and Menisci
,”
Med. Eng. Phys.
,
33
(
4
), pp.
497
503
.
27.
Klodowski
,
A.
,
Mononen
,
M. E.
,
Kulmala
,
J.-P.
,
Valkeapää
,
A.
,
Korhonen
,
R. K.
,
Avela
,
J.
,
Kiviranta
,
I.
,
Jurvelin
,
J. S.
, and
Mikkola
,
A.
,
2015
, “
Merge of Motion Analysis, Multibody Dynamics and Finite Element Method for the Subject-Specific Analysis of Cartilage Loading Patterns During Gait: Differences Between Rotation and Moment-Driven Models of Human Knee Joint
,”
Multibody Syst. Dyn.
, July, pp.
1
20
.
28.
Korhonen
,
R. K.
,
Tanska
,
P.
,
Kaartinen
,
S. M.
,
Fick
,
J. M.
, and
Mononen
,
M. E.
,
2015
, “
New Concept to Restore Normal Cell Responses in Osteoarthritic Knee Joint Cartilage
,”
Exercise Sport Sci. Rev.
,
43
(
3
), pp.
143
152
.
29.
Al Nazer
,
R.
,
Klodowski
,
A.
,
Rantalainen
,
T.
,
Heinonen
,
A.
,
Sievänen
,
H.
, and
Mikkola
,
A.
,
2011
, “
A Full Body Musculoskeletal Model Based on Flexible Multibody Simulation Approach Utilised in Bone Strain Analysis During Human Locomotion
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
6
), pp.
573
579
.
30.
Brechter
,
J. H.
, and
Powers
,
C. M.
,
2002
, “
Patellofemoral Stress During Walking in Persons With and Without Patellofemoral Pain
,”
Med. Sci. Sports Exercise
,
34
(
10
), pp.
1582
1593
.
31.
Krevolin
,
J. L.
,
Pandy
,
M. G.
, and
Pearce
,
J. C.
,
2004
, “
Moment Arm of the Patellar Tendon in the Human Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
37
(
5
), pp.
785
788
.
32.
van Eijden
,
T. M. G. J.
,
de Boer
,
W.
, and
Weijs
,
W. A.
,
1985
, “
The Orientation of the Distal Part of the Quadriceps Femoris Muscle as a Function of the Knee Flexion-Extension Angle
,”
J. Biomech.
,
18
(
10
), pp.
803
809
.
33.
Adouni
,
M.
,
Shirazi-Adl
,
A.
, and
Shirazi
,
R.
,
2012
, “
Computational Biodynamics of Human Knee Joint in Gait: From Muscle Forces to Cartilage Stresses
,”
J. Biomech.
,
45
(
12
), pp.
2149
2156
.
34.
Benoit
,
D. L.
,
Ramsey
,
D. K.
,
Lamontagne
,
M.
,
Xu
,
L.
,
Wretenberg
,
P.
, and
Renström
,
P.
,
2006
, “
Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured In Vivo
,”
Gait Posture
,
24
(
2
), pp.
152
164
.
35.
Kabada
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
,
1990
, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
.
36.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
,
1997
, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
30
(
7
), pp.
729
732
.
37.
Astephen
,
J. L.
,
Deluzio
,
K. J.
,
Caldwell
,
G. E.
, and
Dunbar
,
M. J.
,
2008
, “
Biomechanical Changes at the Hip, Knee, and Ankle Joints During Gait Are Associated With Knee Osteoarthritis Severity
,”
J. Orthop. Res.
,
26
(
3
), pp.
332
341
.
38.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
,
2004
, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
,
37
(
3
), pp.
357
366
.
39.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
,
2005
, “
Erratum to “Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,” [Journal of Biomechanics 37 (2004) 357–366] and “A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage” [Journal of Biomechanics 38 (2005) 1195–1204],”
J. Biomech.
,
38
(
10
), pp.
2138
2140
.
40.
Halonen
,
K. S.
,
Mononen
,
M. E.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
, and
Korhonen
,
R. K.
,
2013
, “
Importance of Depth-Wise Distribution of Collagen and Proteoglycans in Articular Cartilage—A 3D Finite Element Study of Stresses and Strains in Human Knee Joint
,”
J. Biomech.
,
46
(
6
), pp.
1184
1192
.
41.
Bae
,
W. C.
,
Wong
,
V. W.
,
Hwang
,
J.
, and
Antonacci
,
J. M.
,
2007
, “
Wear-Lines and Split-Lines of Human Patellar Cartilage: Relation to Tensile Biomechanical Properties
,”
Osteoarthritis Cartilage
,
16
(
7
), pp.
841
845
.
42.
Villegas
,
D. F.
,
Maes
,
J. A.
,
Magee
,
S. D.
, and
Haut Donahue
,
T. L.
,
2007
, “
Failure Properties and Strain Distribution Analysis of Meniscal Attachments
,”
J. Biomech.
,
40
(
12
), pp.
2655
2662
.
43.
Momersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
,
Kauer
,
J. M. G.
, and
Hendriks
,
J. C. M.
,
1995
, “
The Effect of Variable Relative Insertion Orientation of Human Knee Bone-Ligament-Bone Complexes on the Tensile Stiffness
,”
J. Biomech.
,
28
(
6
), pp.
745
752
.
44.
Schatzmann
,
L.
,
Brunner
,
P.
, and
Stäubli
,
H. U.
,
1998
, “
Effect of Cyclic Preconditioning on the Tensile Properties of Human Quadriceps Tendons and Patelar Ligaments
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
6
(
Suppl. 1
), pp.
56
61
.
45.
Atkinson
,
P.
,
Atkinson
,
T.
,
Huang
,
C.
, and
Doane
,
R.
,
2000
, “
A Comparison of the Mechanical and Dimensional Properties of the Human Medial and Lateral Patellofemoral Ligaments
,”
Transactions for 46th Annual Meeting
, Vol.
46
, Orthopaedic Research Society, Rosemont, IL, p.
776
.
46.
Gantoi
,
F. M.
,
Brown
,
M. A.
, and
Shabana
,
A. A.
,
2013
, “
Finite Element Modeling of the Contact Geometry and Deformation in Biomechanics Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), pp.
1
11
.
47.
Komistek
,
R. D.
,
Stiehl
,
J. B.
,
Dennis
,
D. A.
,
Paxson
,
R. D.
, and
Soutas-Little
,
R. W.
,
1997
, “
Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane's Method of Dynamics
,”
J. Biomech.
,
31
(
2
), pp.
185
189
.
48.
Cappozzo
,
A.
,
Catani
,
F.
,
Della Croce
,
U.
, and
Leardini
,
A.
,
1995
, “
Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination
,”
Clin. Biomech.
,
10
(
4
), pp.
171
178
.
49.
Mononen
,
M. E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2013
, “
Effects of Radial Tears and Partial Meniscectomy of Lateral Meniscus on the Knee Joint Mechanics During the Stance Phase of the Gait Cycle—A 3D Finite Element Study
,”
J. Orthop. Res.
,
31
(
8
), pp.
1208
1217
.
50.
Huberti
,
H. H.
, and
Hayes
,
W. C.
,
1984
, “
Patellofemoral Contact Pressures
,”
J. Bone Joint Surg.
,
66
(
5
), pp.
715
724
.
51.
Quintelier
,
J.
,
Lobbestael
,
F.
,
Verdonk
,
P.
,
Baets
,
P.
, and
Almqvist
,
F.
,
2008
, “
Patellofemoral Contact Pressures
,”
Acta Bioeng.
,
10
(
2
), pp.
23
28
.
52.
Silverberg
,
J. L.
,
Dillavou
,
S.
,
Bonassar
,
L.
, and
Cohen
,
I.
,
2012
, “
Anatomic Variation of Depth-Dependent Mechanical Properties in Neonatal Bovine Articular Cartilage
,”
J. Orthop. Res.
,
31
(
5
), pp.
686
691
.
53.
Meachim
,
G.
,
Ghadially
,
F. N.
, and
Collins
,
D. H.
,
1965
, “
Regressive Changes in the Superficial Layer of Human Articular Cartilage
,”
Ann. Rheum. Dis.
,
24
(
1
), pp.
23
30
.
54.
Räsänen
,
L. P.
,
Mononen
,
M. E.
,
Nieminen
,
M. T.
,
Lammentausta
,
E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2013
, “
Implementation of Subject-Specific Collagen Architecture of Cartilage Into a 2D Computational Model of a Knee Joint—Data From the Osteoarthritis Initiative (OAI)
,”
J. Orthop. Res.
,
31
(
1
), pp.
10
22
.
55.
Woo
,
S. L.-Y.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex, the Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.
56.
Danto
,
M. I.
, and
Woo
,
S. L.-Y.
,
1993
, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
,
11
(
1
), pp.
58
67
.
57.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
,
2005
, “
Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
,
38
(
2
), pp.
293
298
.
58.
Barenius
,
B.
,
Ponzer
,
S.
,
Shalabi
,
A.
,
Bujak
,
R.
,
Norlen
,
L.
, and
Eriksson
,
K.
,
2014
, “
Increased Risk of Osteoarthritis After Anterior Cruciate Ligament Reconstruction: A 14-Year Follow-Up Study of a Randomized Controlled Trial
,”
Am. J. Sports Med.
,
42
(
5
), pp.
1049
1057
.
59.
D'Lima
,
D. D.
,
Hashimoto
,
S.
,
Chen
,
P. C.
, Colwell C. W., and
Lotz
,
M. K.
,
2001
, “
Human Chondrocyte Apoptosis in Response to Mechanical Injury
,”
Osteoarthritis and Cartilage
,
9
(
8
) pp.
712
719
.
60.
Scarwell
,
J. M.
,
Smith
,
P. N.
,
Refshauge
,
K. M.
,
Gallyway
,
H. R.
, and
Woods
,
K. R.
,
2004
, “
Comparison of Kinematic Analysis by Mapping Tibiofemoral Contact With Movement of the Femoral Condylar Centres in Healthy and Anterior Cruciate Ligament Injured Knees
,”
J. Orthop. Res.
,
22
(
5
), pp.
955
962
.
61.
Cappello
,
A.
,
La Palombara
,
P. F.
, and
Leardini
,
A.
,
1996
, “
Optimization and Smoothing Techniques in Movement Analysis
,”
Int. J. Bio-Med. Comput.
,
41
(
3
), pp.
137
151
.
62.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
,
2001
, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
,
34
(
3
), pp.
355
361
.
63.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.
64.
Andersen
,
M. S.
,
Benoit
,
D. L.
,
Damsgaard
,
M.
,
Ramsey
,
D. K.
, and
Rasmussen
,
J.
,
2010
, “
Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? An In Vivo Study of Knee Kinematics
,”
J. Biomech.
,
43
(
2
), pp.
268
273
.
You do not currently have access to this content.