Blood is a complex fluid that, among other things, has been established to behave as a shear thinning, non-Newtonian fluid when exposed to low shear rates (SR). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high SR (>200 s−1). Shear thinning fluids have been shown to exhibit differences in transition to turbulence (TT) compared to that of Newtonian fluids. Incorrect prediction of the transition point in a simulation could result in erroneous hemodynamic force predictions. The goal of the present study was to compare velocity profiles near TT of whole blood and Newtonian blood analogs in a straight rigid pipe with a diameter 6.35 mm under steady flow conditions. Rheology was measured for six samples of whole porcine blood and three samples of a Newtonian fluid, and the results show blood acts as a shear thinning non-Newtonian fluid. Measurements also revealed that blood viscosity at SR = 200 s−1 is significantly larger than at SR = 1000 s−1 (13.8%, p < 0.001). Doppler ultrasound (DUS) was used to measure velocity profiles for blood and Newtonian samples at different flow rates to produce Reynolds numbers (Re) ranging from 1000 to 3300 (based on viscosity at SR = 1000 s−1). Two mathematically defined methods, based on the velocity profile shape change and turbulent kinetic energy (TKE), were used to detect TT. Results show similar parabolic velocity profiles for both blood and the Newtonian fluid for Re < 2200. However, differences were observed between blood and Newtonian fluid velocity profiles for larger Re. The Newtonian fluid had blunt-like velocity profiles starting at Re = 2403 ± 8 which indicated transition. In contrast, blood did not show this velocity profile change until Re = 2871 ± 104. The Newtonian fluid had large velocity fluctuations (root mean square (RMS) > 20%) with a maximum TKE near the pipe center at Re = 2316 ± 34 which indicated transition. In contrast, blood results showed the maximum TKE at Re = 2806 ± 109. Overall, the critical Re was delayed by ∼20% (p < 0.001) for blood compared to the Newtonian fluid. Thus, a Newtonian assumption for blood at flow conditions near transition could lead to large errors in velocity prediction for steady flow in a straight pipe. However, these results are specific to this pipe diameter and not generalizable since SR is highly dependent on pipe diameter. Further research is necessary to understand this relation in different pipe sizes, more complex geometries, and under pulsatile flow conditions.

References

References
1.
Chiu
,
J. J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.
2.
Taylor
,
C. A.
, and
Steinman
,
D. A.
,
2010
, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008 Pasadena, California
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1188
1203
.
3.
Brooks
,
D. E.
,
Goodwin
,
J. W.
, and
Seaman
,
G. V. F.
,
1970
, “
Interactions Among Erythrocytes Under Shear
,”
J. Appl. Physiol.
,
28
(
2
), pp.
172
177
.
4.
Yeleswarapu
,
K. K.
,
Kameneva
,
M. V.
,
Rajagopal
,
K. R.
, and
Antaki
,
J. F.
,
1998
, “
The Flow of Blood in Tubes: Theory and Experiment
,”
Mech. Res. Commun.
,
25
(
3
), pp.
257
262
.
5.
Brookshier
,
K. A.
, and
Tarbell
,
J. M.
,
1993
, “
Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin
,”
Biorheology
,
30
(
2
), pp.
107
116
.
6.
Gijsen
,
F. J.
,
Van De Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.
7.
Lee
,
S. W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based Cfd Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
273
278
.
8.
Chen
,
J.
,
Lu
,
X. Y.
, and
Wang
,
W.
,
2006
, “
Non-Newtonian Effects of Blood Flow on Hemodynamics in Distal Vascular Graft Anastomoses
,”
J. Biomech.
,
39
(
11
), pp.
1983
1995
.
9.
Escudier
,
M. P.
,
Poole
,
R. J.
,
Presti
,
F.
,
Dales
,
C.
,
Nouar
,
C.
,
Desaubry
,
C.
,
Graham
,
L.
, and
Pullum
,
L.
,
2005
, “
Observations of Asymmetrical Flow Behaviour in Transitional Pipe Flow of Yield-Stress and Other Shear-Thinning Liquids
,”
J. Non-Newtonian Fluid Mech.
,
127
(
2–3
), pp.
143
155
.
10.
Rudman
,
M.
,
Blackburn
,
H. M.
,
Graham
,
L. J. W.
, and
Pullum
,
L.
,
2004
, “
Turbulent Pipe Flow of Shear-Thinning Fluids
,”
J. Non-Newtonian Fluid Mech.
,
118
(
1
), pp.
33
48
.
11.
Rudman
,
M.
, and
Blackburn
,
H. M.
,
2006
, “
Direct Numerical Simulation of Turbulent Non-Newtonian Flow Using a Spectral Element Method
,”
Appl. Math. Modell.
,
30
(
11
), pp.
1229
1248
.
12.
Guzel
,
B.
,
Burghelea
,
T.
,
Frigaard
,
I. A.
, and
Martinez
,
D. M.
,
2009
, “
Observation of Laminar-Turbulent Transition of a Yield Stress Fluid in Hagen–Poiseuille Flow
,”
J. Fluid Mech.
,
627
, pp.
97
128
.
13.
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
,
2008
, “
Blood Flow in End-to-Side Anastomoses
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
367
393
.
14.
Lee
,
S. E.
,
Lee
,
S. W.
,
Fischer
,
P. F.
,
Bassiouny
,
H. S.
, and
Loth
,
F.
,
2008
, “
Direct Numerical Simulation of Transitional Flow in a Stenosed Carotid Bifurcation
,”
J. Biomech.
,
41
(
11
), pp.
2551
2561
.
15.
Valen-Sendstad
,
K.
,
Piccinelli
,
M.
, and
Steinman
,
D. A.
,
2014
, “
High-Resolution Computational Fluid Dynamics Detects Flow Instabilities in the Carotid Siphon: Implications for Aneurysm Initiation and Rupture?
,”
J. Biomech.
,
47
(
12
), pp.
3210
3216
.
16.
Stein
,
P. D.
, and
Sabbah
,
H. N.
,
1976
, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circ. Res.
,
39
(
1
), pp.
58
65
.
17.
Yoganathan
,
A. P.
,
Chandran
,
K. B.
, and
Sotiropoulos
,
F.
,
2005
, “
Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1689
1694
.
18.
Li
,
C. P.
,
Chen
,
S. F.
,
Lo
,
C. W.
, and
Lu
,
P. C.
,
2011
, “
Turbulence Characteristics Downstream of a New Trileaflet Mechanical Heart Valve
,”
ASAIO J.
,
57
(
3
), pp.
188
196
.
19.
Kurtz
,
K. J.
,
1990
,
Clinical Methods: The History, Physical, and Laboratory Examinations
,
Bruits and Hums of the Head and Neck
,
Butterworth, Boston, MA
.
20.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
83
(
7
), pp.
2114
2117
.
21.
Mccormick
,
S. M.
,
Seil
,
J. T.
,
Smith
,
D. S.
,
Tan
,
F.
, and
Loth
,
F.
,
2012
, “
Transitional Flow in a Cylindrical Flow Chamber for Studies at the Cellular Level
,”
Cardiovasc. Eng. Technol.
,
3
(
4
), pp.
439
449
.
22.
Jones
,
S. A.
,
1995
, “
A Relationship Between Reynolds Stresses and Viscous Dissipation: Implications to Red Cell Damage
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
21
28
.
23.
Nerem
,
R. M.
, and
Seed
,
W. A.
,
1972
, “
An In Vivo Study of Aortic Flow Disturbances
,”
Cardiovasc. Res.
,
6
(
1
), pp.
1
14
.
24.
Ferrari
,
M.
,
Werner
,
G. S.
,
Bahrmann
,
P.
,
Richartz
,
B. M.
, and
Figulla
,
H. R.
,
2006
, “
Turbulent Flow as a Cause for Underestimating Coronary Flow Reserve Measured by Doppler Guide Wire
,”
Cardiovasc. Ultrasound
,
4
(
1
), p.
14
.
25.
Coulter
,
N. A.
, Jr.
, and
Pappenheimer
,
J. R.
,
1949
, “
Development of Turbulence in Flowing Blood
,”
Am. J. Physiol.
,
159
(
2
), pp.
401
408
.
26.
Thurston
,
G. B.
,
1979
, “
Rheological Parameters for the Viscosity Viscoelasticity and Thixotropy of Blood
,”
Biorheology
,
16
(
3
), pp.
149
162
.
27.
Chien
,
S.
,
Usami
,
S.
,
Dellenback
,
R. J.
,
Gregersen
,
M. I.
,
Nanninga
,
L. B.
, and
Guest
,
M. M.
,
1967
, “
Blood Viscosity: Influence of Erythrocyte Aggregation
,”
Science
,
157
(
3790
), pp.
829
831
.
28.
Schmid-Schonbein
,
H.
,
Wells
,
R.
, and
Goldstone
,
J.
,
1969
, “
Influence of Deformability of Human Red Cells Upon Blood Viscosity
,”
Circ. Res.
,
25
(
2
), pp.
131
143
.
29.
Rosenblum
,
W. I.
,
1968
, “
In Vitro Measurements of the Effects of Anticoagulants on the Flow Properties of Blood: The Relationship of These Effects to Red Cell Shrinkage
,”
Blood
,
31
(
2
), pp.
234
241
.
30.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb Hemost.
,
29
(
5
), pp.
435
450
.
31.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
1997
, “
Cellular Determinants of Low-Shear Blood Viscosity
,”
Biorheology
,
34
(
3
), pp.
235
247
.
32.
Thurston
,
G. B.
, and
Henderson
,
N. M.
,
2006
, “
Effects of Flow Geometry on Blood Viscoelasticity
,”
Biorheology
,
43
(
6
), pp.
729
746
.
33.
Guyton
,
A. C.
,
1981
,
Textbook of Medical Physiology
,
W.B. Saunders
,
Philadelphia, PA
.
34.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
35.
Esmael
,
A.
,
Nouar
,
C.
,
Lefevre
,
A.
, and
Kabouya
,
N.
,
2010
, “
Transitional Flow of a Non-Newtonian Fluid in a Pipe: Experimental Evidence of Weak Turbulence Induced by Shear-Thinning Behavior
,”
Phys. Fluids
,
22
(
10
), p.
101701
.
36.
Thorne
,
M. L.
,
Rankin
,
R. N.
,
Steinman
,
D. A.
, and
Holdsworth
,
D. W.
,
2010
, “
In Vivo Doppler Ultrasound Quantification of Turbulence Intensity Using a High-Pass Frequency Filter Method
,”
Ultrasound Med. Biol.
,
36
(
5
), pp.
761
771
.
37.
Jones
,
S. A.
,
1993
, “
Fundamental Sources of Error and Spectral Broadening in Doppler Ultrasound Signals
,”
Crit. Rev. Biomed. Eng.
,
21
(
5
), pp.
399
483
.
You do not currently have access to this content.