Several approaches have been used to devise a model of the human tibiofemoral joint for embedment in lower limb musculoskeletal models. However, no study has considered the use of cadaveric 6 × 6 compliance (or stiffness) matrices to model the tibiofemoral joint under normal or pathological conditions. The aim of this paper is to present a method to determine the compliance matrix of an ex vivo tibiofemoral joint for any given equilibrium pose. Experiments were carried out on a single ex vivo knee, first intact and, then, with the anterior cruciate ligament (ACL) transected. Controlled linear and angular displacements were imposed in single degree-of-freedom (DoF) tests to the specimen, and the resulting forces and moments were measured using an instrumented robotic arm. This was done starting from seven equilibrium poses characterized by the following flexion angles: 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. A compliance matrix for each of the selected equilibrium poses and for both the intact and ACL-deficient specimen was calculated. The matrix, embedding the experimental load–displacement relationship of the examined DoFs, was calculated using a linear least squares inversion based on a QR decomposition, assuming symmetric and positive-defined matrices. Single compliance matrix terms were in agreement with the literature. Results showed an overall increase of the compliance matrix terms due to the ACL transection (2.6 ratio for rotational terms at full extension) confirming its role in the joint stabilization. Validation experiments were carried out by performing a Lachman test (the tibia is pulled forward) under load control on both the intact and ACL-deficient knee and assessing the difference (error) between measured linear and angular displacements and those estimated using the appropriate compliance matrix. This error increased nonlinearly with respect to the values of the load. In particular, when an incremental posterior–anterior force up to 6 N was applied to the tibia of the intact specimen, the errors on the estimated linear and angular displacements were up to 0.6 mm and 1.5 deg, while for a force up to 18 N, the errors were 1.5 mm and 10.5 deg, respectively. In conclusion, the method used in this study may be a viable alternative to characterize the tibiofemoral load-dependent behavior in several applications.

References

References
1.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.
2.
Beynnon
,
B.
,
Yu
,
J.
,
Huston
,
D.
,
Fleming
,
B.
,
Johnson
,
R.
,
Haugh
,
L.
, and
Pope
,
M. H.
,
1996
, “
A Sagittal Plane Model of the Knee and Cruciate Ligaments With Application of a Sensitivity Analysis
,”
ASME J. Biomech. Eng.
,
118
(
2
), pp.
227
239
.
3.
Hu
,
C.-C.
,
Lu
,
T.-W.
, and
Chen
,
S.-C.
,
2013
, “
Influence of Model Complexity and Problem Formulation on the Forces in the Knee Calculated Using Optimization Methods
,”
Biomed. Eng. OnLine
,
12
(
1
), p.
20
.
4.
Fernandez
,
J. W.
, and
Pandy
,
M. G.
,
2006
, “
Integrating Modelling and Experiments to Assess Dynamic Musculoskeletal Function in Humans
,”
Exp. Physiol.
,
91
(
2
), pp.
371
382
.
5.
Yang
,
N. H.
,
Canavan
,
P. K.
,
Nayeb-Hashemi
,
H.
,
Najafi
,
B.
, and
Vaziri
,
A.
,
2010
, “
Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
589
603
.
6.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
,
38
(
2
), pp.
323
331
.
7.
Ribeiro
,
A.
,
Rasmussen
,
J.
,
Flores
,
P.
, and
Silva
,
L. F.
,
2012
, “
Modeling of the Condyle Elements Within a Biomechanical Knee Model
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
181
197
.
8.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
9.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2011
, “
A Sequentially-Defined Stiffness Model of the Knee
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1920
1928
.
10.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.
11.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2005
, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1948
1956
.
12.
Moissenet
,
F.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2014
, “
A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait
,”
J. Biomech.
,
47
(
1
), pp.
50
58
.
13.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1998
, “
Biomechanical Response of the Passive Human Knee Joint Under Anterior-Posterior Forces
,”
Clin. Biomech.
,
13
(
8
), pp.
625
633
.
14.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.
15.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.
16.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.
17.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.
18.
Kazemi
,
M.
,
Dabiri
,
Y.
, and
Li
,
L. P.
,
2013
, “
Recent Advances in Computational Mechanics of the Human Knee Joint
,”
Comput. Math. Methods Med.
,
2013
, p.
718423
.
19.
Xu
,
H.
,
Bloswick
,
D.
, and
Merryweather
,
A.
,
2014
, “
An Improved OpenSim Gait Model With Multiple Degrees of Freedom Knee Joint and Knee Ligaments
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1217
1224
.
20.
Al Nazer
,
R.
,
Rantalainen
,
T.
,
Heinonen
,
A.
,
Sievänen
,
H.
, and
Mikkola
,
A.
,
2008
, “
Flexible Multibody Simulation Approach in the Analysis of Tibial Strain During Walking
,”
J. Biomech.
,
41
(
5
), pp.
1036
1043
.
21.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
22.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
23.
Christophy
,
M.
,
Faruk Senan
,
N. A.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2012
, “
A Musculoskeletal Model for the Lumbar Spine
,”
Biomech. Model. Mechanobiol.
,
11
(
1
), pp.
19
34
.
24.
Koell
,
P.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2010
, “
Prediction of Internal Spine Configuration From External Measurements Using a Multi-Body Model of the Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
Suppl. 1
), pp.
79
80
.
25.
Petit
,
Y.
,
Aubin
,
C. E.
, and
Labelle
,
H.
,
2004
, “
Patient-Specific Mechanical Properties of a Flexible Multi-Body Model of the Scoliotic Spine
,”
Med. Biol. Eng. Comput.
,
42
(
1
), pp.
55
60
.
26.
Marin
,
F.
,
Hoang
,
N.
,
Aufaure
,
P.
, and
Ho Ba Tho
,
M. C.
,
2010
, “
In Vivo Intersegmental Motion of the Cervical Spine Using an Inverse Kinematics Procedure
,”
Clin. Biomech.
,
25
(
5
), pp.
389
396
.
27.
Fujie
,
H.
,
Mabuchi
,
K.
, and
Woo
,
S.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
(
3
), pp.
211
217
.
28.
Markolf
,
K. L.
,
Mensch
,
J.
, and
Amstutz
,
H.
,
1976
, “
Stiffness and Laxity of the Knee—The Contributions of the Supporting Structures. A Quantitative In Vitro Study
,”
J. Bone Jt. Surg. Am.
,
58
(
5
), pp.
583
594
.
29.
Eagar
,
P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2001
, “
A Method for Quantifying the Anterior Load–Displacement Behavior of the Human Knee in Both the Low and High Stiffness Regions
,”
J. Biomech.
,
34
(
12
), pp.
1655
1660
.
30.
Fox
,
R. J.
,
Harner
,
C. D.
,
Sakane
,
M.
,
Carlin
,
G. J.
, and
Woo
,
S. L.
,
1998
, “
Determination of the In Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology. A Cadaveric Study
,”
Am. J. Sports Med.
,
26
(
3
), pp.
395
401
.
31.
Kanamori
,
A.
,
Woo
,
S. L.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy
,
16
(
6
), pp.
633
639
.
32.
Loch
,
D. A.
,
Luo
,
Z. P.
,
Lewis
,
J. L.
, and
Stewart
,
N. J.
,
1992
, “
A Theoretical Model of the Knee and ACL: Theory and Experimental Verification
,”
J. Biomech.
,
25
(
1
), pp.
81
90
.
33.
Hsieh
,
H.-J.
,
Hu
,
C.-C.
,
Lu
,
T.-W.
,
Lu
,
H.-L.
,
Kuo
,
M.-Y.
,
Kuo
,
C.-C.
, and
Hsu
,
H.-C.
, “
Evaluation of Three Force-Position Hybrid Control Methods for a Robot-Based Biological Joint Testing System
,”
Biomed. Eng. Online
(in press).
34.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.
35.
Fujie
,
H.
,
Sekito
,
T.
, and
Orita
,
A.
,
2004
, “
A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
54
61
.
36.
Fujie
,
H.
,
Livesay
,
G.
,
Fujita
,
M.
, and
Woo
,
S.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(
12
), pp.
1577
1585
.
37.
Grood
,
E.
,
1988
, “
Limits of Movement in the Human Knee. Effect of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures
,”
J. Bone Jt. Surg. Am.
,
70
(
1
), pp.
88
97
.
38.
Zantop
,
T.
,
Herbort
,
M.
,
Raschke
,
M. J.
,
Fu
,
F. H.
, and
Petersen
,
W.
,
2007
, “
The Role of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament in Anterior Tibial Translation and Internal Rotation
,”
Am. J. Sports Med.
,
35
(
2
), pp.
223
227
.
39.
Stokes
,
I. A.
,
Gardner-Morse
,
M.
,
Churchill
,
D.
, and
Laible
,
J. P.
,
2002
, “
Measurement of a Spinal Motion Segment Stiffness Matrix
,”
J. Biomech.
,
35
(
4
), pp.
517
521
.
40.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A. F.
,
2004
, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.
41.
Pennestrì
,
E.
, and
Cheli
,
F.
,
2006
,
Cinematica e dinamica dei sistemi multibody
, Vol.
1
,
Casa Editrice Ambrosiana
,
Milano, Italy
(in Italian).
42.
Guess
,
T. M.
,
Liu
,
H.
,
Bhashyam
,
S.
, and
Thiagarajan
,
G.
,
2011
, “
A Multibody Knee Model With Discrete Cartilage Prediction of Tibio-Femoral Contact Mechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
3
), pp.
256
270
.
43.
Mommersteeg
,
T. J.
,
Huiskes
,
R.
,
Blankevoort
,
L.
,
Kooloos
,
J. G.
, and
Kauer
,
J. M.
,
1997
, “
An Inverse Dynamics Modeling Approach to Determine the Restraining Function of Human Knee Ligament Bundles
,”
J. Biomech.
,
30
(
2
), pp.
139
146
.
44.
Christophy
,
M.
,
Curtin
,
M.
,
Faruk Senan
,
N. A.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2013
, “
On the Modeling of the Intervertebral Joint in Multibody Models for the Spine
,”
Multibody Syst. Dyn.
,
30
(
4
), pp.
413
432
.
45.
Kim
,
K.
,
Kim
,
Y. H.
, and
Lee
,
S.
,
2012
, “
General Computational Model for Human Musculoskeletal System of Spine
,”
J. Appl. Math.
,
2012
, p.
484759
.
46.
Lu
,
T.-W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.
47.
Mokhtarzadeh
,
H.
,
Perraton
,
L.
,
Fok
,
L.
,
Muñoz
,
M. A.
,
Clark
,
R.
,
Pivonka
,
P.
, and
Bryant
,
A. L.
,
2014
, “
A Comparison of Optimisation Methods and Knee Joint Degrees of Freedom on Muscle Force Predictions During Single-Leg Hop Landings
,”
J. Biomech.
,
47
(
12
), pp.
2863
2868
.
48.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
2003
, “
A Spatial Mechanism With Higher Pairs for Modelling the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
232
237
.
You do not currently have access to this content.