One limitation of forced spirometry is that it integrates the contribution of the complex and dynamic behavior of all of the airways and tissue of the lung into a single exhaling unit, hence, it is not clear how spirometric measures are affected by local changes to the airways or tissue such as the presence of “ventilation defects.” Here, we adapt a wave-speed limitation model to a spatially distributed and anatomically based airway tree that is embedded within a deformable parenchyma, to simulate forced expiration in 1 s (FEV1). This provides a model that can be used to assess the consequence of imposed constrictions on FEV1. We first show how the model can be parameterized to represent imaging and forced spirometry data from nonasthmatic healthy young adults. We then compare the effect of homogeneous and clustered bronchoconstriction on FEV1 in six subject-specific models (three male and three female). The model highlights potential sources of normal subject variability in response to agonist challenge, including the interaction between sites of airway constriction and sites of flow limitation at baseline. The results support earlier studies which proposed that the significant constriction of nondefect airways must be present in order to match to clinical measurements of lung function.

References

References
1.
de Lange
,
E. E.
,
Altes
,
T. A.
,
Patrie
,
J. T.
,
Gaare
,
J. D.
,
Knake
,
J. J.
,
Mugler
,
J. P.
, III
, and
Platts-Mills
,
T. A.
,
2006
, “
Evaluation of Asthma With Hyperpolarized Helium-3 MRI: Correlation With Clinical Severity and Spirometry
,”
Chest
,
130
(
4
), pp.
1055
1062
.
2.
Tzeng
,
Y.
,
Lutchen
,
K.
, and
Albert
,
M.
,
2009
, “
The Difference in Ventilation Heterogeneity Between Asthmatic and Healthy Subjects Quantified by Using Hyperpolarized 3 He MRI
,”
J. Appl. Physiol.
,
106
(
3
), pp.
813
822
.
3.
Costella
,
S.
,
Kirby
,
M.
,
Maksym
,
G.
,
McCormack
,
D.
,
Paterson
,
N.
, and
Parraga
,
G.
,
2012
, “
Regional Pulmonary Response to a Methacholine Challenge Using Hyperpolarized 3He Magnetic Resonance Imaging
,”
Respirology
,
17
(
8
), pp.
1237
1246
.
4.
Anafi
,
R.
,
Beck
,
K.
, and
Wilson
,
T.
,
2003
, “
Impedence, Gas Mixing, and Bimodal Ventilation in Constricted Lungs
,”
J. Appl. Physiol.
,
94
(
3
), pp.
1003
1011
.
5.
Venegas
,
J. G.
,
Winkler
,
T.
,
Musch
,
G.
,
Vidal Melo
,
M. F.
,
Layfield
,
D.
,
Tgavalekos
,
N.
,
Fischman
,
A. J.
,
Callahan
,
R. J.
,
Bellani
,
G.
, and
Harris
,
R. S.
,
2005
, “
Self-Organized Patchiness in Asthma as a Prelude to Catastrophic Shifts
,”
Nature
,
434
(
7034
), pp.
777
782
.
6.
Lambert
,
R. K.
,
Wilson
,
T. A.
,
Hyatt
,
R. E.
, and
Rodarte
,
J. R.
,
1982
, “
A Computational Model for Expiratory Flow
,”
J. Appl. Physiol.
,
52
(
1
), pp.
44
56
.
7.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Springer-Verlag
,
Berlin
.
8.
Polak
,
A.
, and
Lutchen
,
K.
,
2003
, “
Computational Model for Forced Expiration From Asymmetrical Normal Lungs
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
891
907
.
9.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
, pp.
207
217
.
10.
Pardaens
,
P.
,
Van De Woestijne
,
K.
, and
Clement
,
J.
,
1972
, “
A Physical Model of Expiration
,”
J. Appl. Physiol.
,
33
(
4
), pp.
479
490
.
11.
Solway
,
J.
,
Fredberg
,
J.
,
Ingram
,
R.
, Jr.
,
Pedersen
,
O.
, and
Drazen
,
J.
,
1987
, “
Interdependent Regional Lung Emptying During Forced Expiration: A Transistor Model
,”
J. Appl. Physiol.
,
62
(
5
), pp.
2013
2025
.
12.
Abboud
,
S.
,
Barnea
,
O.
,
Guber
,
A.
,
Narkiss
,
N.
, and
Bruderman
,
I.
,
1995
, “
Maximum Expiratory Flow-Volume Curve: Mathematical Model and Experimental Results
,”
Med. Eng. Phys.
,
17
(
5
), pp.
332
336
.
13.
Tgavalekos
,
N.
,
Tawhai
,
M.
,
Harris
,
R.
,
Mush
,
G.
,
Vidal-Melo
,
M.
,
Venegas
,
J.
, and
Lutchen
,
K.
,
2005
, “
Identifying Airways Responsible for Heterogeneous Ventilation and Mechanical Dysfunction in Asthma: An Image Functional Modeling Approach
,”
J. Appl. Physiol.
,
99
(
6
), pp.
2388
2397
.
14.
Mitchell
,
J. H.
,
Hoffman
,
E. A.
, and
Tawhai
,
M. H.
,
2012
, “
Relating Indices of Inert Gas Washout to Localised Bronchoconstriction
,”
Respir. Physiol. Neurobiol.
,
183
(
3
), pp.
224
233
.
15.
Tawhai
,
M. H.
,
Hunter
,
P. J.
,
Tschirren
,
J.
,
Reinhardt
,
J. M.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2004
, “
CT-Based Geometry Analysis and Finite Element Models of the Human and Ovine Bronchial Tree
,”
J. Appl. Physiol.
,
97
(
6
), pp.
2310
2321
.
16.
Hart
,
M.
,
Orzalesi
,
M.
, and
Crook
,
C. D.
,
1963
, “
Relation Between Anatomic Respiratory Dead Space and Body Size and Lung Volume
,”
J. Appl. Physiol.
,
18
(
3
), pp.
519
522
.
17.
Dawson
,
S. V.
, and
Elliot
,
E. A.
,
1977
, “
Wave-Speed Limitation on Expiratory Flow—A Unifying Concept
,”
J. Appl. Physiol.
,
43
(
3
), pp.
498
515
.
18.
Reynolds
,
D.
, and
Lee
,
J.
,
1981
, “
Steady Pressure-Flow Relationship of a Model of the Canine Bronchial Tree
,”
J. Appl. Physiol.
,
51
(
5
), pp.
1072
1079
.
19.
Polak
,
A.
,
1998
, “
A Forward Model for Maximum Expiration
,”
Comput. Biol. Med.
,
28
(
6
), pp.
613
625
.
20.
Tawhai
,
M.
,
Nash
,
N.
,
Lin
,
C.
, and
Hoffman
,
E.
,
2009
, “
Supine and Prone Differences in Regional Lung Density and Pleural Pressure Gradients in the Human Lung With Constant Shape
,”
J. Appl. Physiol.
,
107
(
3
), pp.
912
920
.
21.
Fung
,
Y. C.
,
1990
,
Biomechanics: Motion, Flow, Stress, Growth
,
Springer-Verlag
,
New York
.
22.
Tzelepis
,
G.
,
Pavleas
,
I.
,
Altarifi
,
A.
,
Omran
,
Q.
, and
McCool
,
D.
,
2005
, “
Expiratory Effort Enhancement and Peak Expiratory Flow in Humans
,”
Eur. J. Appl. Physiol.
,
94
(1), pp.
11
16
.
23.
Tantucci
,
C.
,
Duguet
,
A.
,
Giampiccolo
,
P.
,
Similowski
,
T.
,
Zelter
,
M.
, and
Derenne
,
J.
,
2002
, “
The Best Peak Expiratory Flow is Flow-Limited and Effort-Independent in Normal Subjects
,”
Am. J. Respir. Crit. Care Med.
,
165
(
9
), pp.
1304
1308
.
24.
Busacker
,
A.
,
Newell
,
J. D.
, Jr.
,
Keefe
,
T.
,
Hoffman
,
E. A.
,
Granroth
,
J. C.
,
Castro
,
M.
,
Fain
,
S.
, and
Wenzel
,
S.
,
2009
, “
A Multivariate Analysis of Risk Factors for the Air-Trapping Asthmatic Phenotype as Measured by Quantitative CT Analysis
,”
Chest
,
135
(
1
), pp.
48
56
.
25.
Hankinson
,
J. L.
,
Odencrantz
,
J. R.
, and
Fedan
,
K. B.
,
1999
, “
Spirometric Reference Values From a Sample of the General U.S. Population
,”
Am. J. Respir. Crit. Care Med.
,
159
(
1
), pp.
179
187
.
26.
American Thoracic Society
,
2000
, “
Guidelines for Methacholine and Exercise Challenge Testing—1999
,”
Am. J. Respir. Crit. Care Med.
,
161
(
1
), pp.
309
329
.
27.
Chung
,
K. F.
,
Wenzel
,
S. E.
,
Brozek
,
J. L.
,
Bush
,
A.
,
Castro
,
M.
,
Sterk
,
P. J.
,
Adcock
,
I. M.
,
Bateman
,
E. D.
,
Bel
,
E. H.
,
Bleecker
,
E. R.
,
Boulet
,
L. P.
,
Brightling
,
C.
,
Chanez
,
P.
,
Dahlen
,
S. E.
,
Djukanovic
,
R.
,
Frey
,
U.
,
Gaga
,
M.
,
Gibson
,
P.
,
Hamid
,
Q.
,
Jajour
,
N. N.
,
Mauad
,
T.
,
Sorkness
,
R. L.
, and
Teague
,
W. G.
,
2014
, “
International ERS/ATS Guidelines on Definition, Evaluation and Treatment of Severe Asthma
,”
Eur. Respir. J.
,
43
(
2
), pp.
343
373
.
28.
Heil
,
M.
,
Hazel
,
A. L.
, and
Smith
,
J. A.
,
2008
, “
The Mechanics of Airway Closure
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
214
221
.
29.
Miller
,
M. R.
,
Hankinson
,
J.
,
Brusasco
,
V.
,
Burgos
,
F.
,
Casaburi
,
R.
,
Coates
,
A.
,
Crapo
,
R.
,
Enright
,
P.
,
van der Grinten
,
C. P.
,
Gustafsson
,
P.
,
Jensen
,
R.
,
Johnson
,
D. C.
,
MacIntyre
,
N.
,
McKay
,
R.
,
Navajas
,
D.
,
Pedersen
,
O. F.
,
Pellegrino
,
R.
,
Viegi
,
G.
,
Wanger
,
J.
, and
Force
,
A. E. T.
,
2005
, “
Standardisation of Spirometry
,”
Eur. Respir. J.
,
26
(
2
), pp.
319
338
.
30.
Pedley
,
T. J.
,
1977
, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Dyn.
,
9
(
1
), pp.
229
274
.
31.
Schroter
,
R.
, and
Sudlow
,
M.
,
1969
, “
Flow Patterns in Models of the Human Bronchial Airways
,”
Respir. Physiol.
,
7
(
3
), pp.
341
355
.
You do not currently have access to this content.