Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic–elastic. The model has geometrical features representative of the female cervical spine—the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion–extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion–extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.

References

References
1.
Goel
, V
. K.
, and
Clausen
,
J. D.
,
1998
, “
Prediction of Load Sharing Among Spinal Components of a C5–C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
(
6
), pp.
684
691
.
2.
Panzer
,
M.
, and
Cronin
,
D.
,
2009
, “
C4–C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.
3.
Laville
,
A.
,
Laporte
,
S.
, and
Skalli
,
W.
,
2009
, “
Parametric and Subject-Specific Finite Element Modelling of the Lower Cervical Spine. Influence of Geometrical Parameters on the Motion Patterns
,”
J. Biomech.
,
42
(
10
), pp.
1409
1415
.
4.
Camacho
,
D.
,
Nightingale
,
R.
,
Robinette
,
J.
,
Vanguri
,
S. K.
,
Coates
,
D. J.
, and
Myers
,
B. S.
,
1997
, “
Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact
,”
41st Stapp Car Crash Conference
, Lake Buena Vista, FL, Nov. 13–14,
Society of Automotive Engineers
,
Warrendale, PA
, pp.
473
486
.
5.
Yang
,
K.
,
Zhu
,
F.
,
Luan
,
F.
,
Zhao
,
L.
, and
Begeman
,
P. C.
,
1998
, “
Development of a Finite Element Model of the Human Neck
,”
42nd Stapp Car Crash Conference
, Tempe, AZ, Nov. 2–4,
Society of Automotive Engineers
,
Warrendale, PA
, SAE Paper No. 983157.
6.
Jost
,
R.
, and
Nurick
,
G.
,
2000
, “
Development of a Finite Element Model of the Human Neck Subjected to High g-Level Lateral Deceleration
,”
Int. J. Crashworthiness
,
5
(
3
), pp.
259
269
.
7.
Halldin
,
P. H.
,
Brolin
,
K.
,
Kleiven
,
S.
,
von Holst
,
H.
,
Jakobsson
,
L.
, and
Palmertz
,
C.
,
2000
, “
Investigations of Conditions That Affect Neck Compression Flexion Injuries Using Numerical Techniques
,”
Stapp Car Crash J.
,
44
, pp.
127
138
.
8.
Brolin
,
K.
, and
Halldin
,
P.
,
2004
, “
Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics
,”
Spine
,
29
(
4
), pp.
376
385
.
9.
Meyer
,
F.
,
Bourdet
,
N.
,
Deck
,
C.
,
Willinger
,
R.
, and
Raul
,
J. S.
,
2004
, “
Human Neck Finite Element Model Development and Validation Against Original Experimental Data
,”
Stapp Car Crash J.
,
48
, pp.
1
30
.
10.
Ejima
,
S.
,
Ono
,
K.
,
Kaneoka
,
K.
, and
Fukushima
,
M.
,
2005
, “
Development and Validation of the Human Neck Muscle Model Under Impact Loading
,” International IRCOBI Conference on the Biomechanics of Impact, Prague, Czech Republic, Sept. 21–23, pp.
245
255
.
11.
Zhang
,
Q.
,
Teo
,
E.
, and
Ng
,
H.
,
2005
, “
Development and Validation of a C0–C7 FE Complex for Biomechanical Study
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
729
735
.
12.
Kitagawa
,
Y.
,
Yasuki
,
T.
, and
Hasegawa
,
J.
,
2008
, “
Research Study on Neck Injury Lessening With Active Head Restraint Using Human Body FE Model
,”
Traffic Inj. Prev.
,
9
(
6
), pp.
574
582
.
13.
Panzer
,
M.
,
Fice
,
J.
, and
Cronin
,
D.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1147
1159
.
14.
O'Neill
,
B.
,
Haddon
,
W.
, Jr
,
Kelley
,
A. B.
, and
Sorenson
,
W. W.
,
1972
, “
Automobile Head Restraints: Frequency of Neck Injury Claims in Relation to the Presence of Head Restraints
,”
Am. J. Public Health
,
62
, pp.
399
406
.
15.
Morris
,
A. P.
, and
Thomas
,
P. D.
,
1996
, “
Neck Injuries in the UK Co-Operative Crash Injury Study
,”
40th Stapp Car Crash Conference
, Albuquerque, NM, Nov. 4–6,
Society of Automotive Engineers
,
Warrendale, PA
, pp.
317
329
.
16.
Temming
,
J.
, and
Zobel
,
R.
,
1998
, “
Frequency and Risk of Cervical Spine Distortion Injuries in Passenger Car Accidents: Significance of Human Factors Data
,”
International IRCOBI Conference on the Biomechanics of Impact, Göteberg, Sweden, Sept. 16–18,
, pp.
219
233
.
17.
Krafft
,
M.
,
Kullgren
,
A.
,
Lie
,
A.
, and
Tingvall
,
C.
,
2003
, “
The Risk of Whiplash Injury in the Rear Seat Compared to the Front Seat in Rear Impacts
,”
Traffic Inj. Prev.
,
4
(
2
), pp.
136
140
.
18.
Jakobsson
,
L.
,
Norin
,
H.
, and
Svensson
,
M. Y.
,
2004
, “
Parameters Influencing AIS 1 Neck Injury Outcome in Frontal Impacts
,”
Traffic Inj. Prev.
,
5
(
2
), pp.
156
163
.
19.
Carstensen
,
T. B.
,
Frostholm
,
L.
,
Oernboel
,
E.
,
Kongsted
,
A.
,
Kasch
,
H.
,
Jensen
,
T. S.
, and
Fink
,
P.
,
2012
, “
Are There Gender Differences in Coping With Neck Pain Following Acute Whiplash Trauma? A 12-Month Follow-Up Study
,”
Eur. J. Pain
,
16
(
1
), pp.
49
60
.
20.
Watanabe
,
Y.
,
Ichikawa
,
H.
,
Kayama
,
O.
,
Ono
,
K.
,
Kaneoka
,
K.
, and
Inami
,
S.
,
2000
, “
Influence of Seat Characteristics on Occupant Motion in Low-Velocity Rear-End Impacts
,”
Accid. Anal. Prev.
,
32
(
2
), pp.
243
250
.
21.
Stigson
,
H.
,
Gustafsson
,
M.
,
Sunnevång
,
C.
,
Krafft
,
M.
, and
Kullgren
,
A.
,
2015
, “
Differences in Long-Term Medical Consequences Depending on Impact Direction Involving Passenger Cars
,”
Traffic Inj. Prev.
,
16
(S1), pp.
S133
S139
.
22.
Kullgren
,
A.
,
Krafft
,
M.
,
Lie
,
A.
, and
Tingvall
,
C.
,
2007
, “
The Effect of Whiplash Protection Systems in Real-Life Crashes and Their Correlation to Consumer Crash Test Programmes
,” 20th International Technical Conference on the Enhanced Safety of Vehicles (
20th ESV
), Lyon, France, June 18–21, Paper No. 07-0468.
23.
Kullgren
,
A.
,
Stigson
,
H.
, and
Krafft
,
M.
,
2013
, “
Development of Whiplash Associated Disorders for Male and Female Car Occupants in Cars Launched Since the 80s in Different Impact Directions
,”
International IRCOBI Conference on the Biomechanics of Impact, Gothenberg, Sweden, Sept. 11–13,
, pp.
51
62
.
24.
Svensson
,
M. Y.
,
Boström
,
O.
,
Davidsson
,
J.
,
Hansson
,
H.-A.
,
Håland
,
Y.
,
Lövsund
,
P.
,
Suneson
,
A.
, and
Säljö
,
A.
,
2000
, “
Neck Injuries in Car Collisions—A Review Covering Possible Injury Mechanism and the Development of a New Rear-Impact Dummy
,”
Accid. Anal. Prev.
,
32
(
2
), pp.
167
175
.
25.
Schneider
,
L. W.
,
Robbins
,
D. H.
,
Pflüg
,
M. A.
, and
Snyder
,
R. G.
,
1983
, “
Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropomorphic Dummy Family, Final Report
,” Transportation Research Institute, University of Michigan, Ann Arbor, MI.
26.
Linder
,
A.
,
Schick
,
S.
,
Hell
,
W.
,
Svensson
,
M.
,
Carlsson
,
A.
,
Lemmen
,
P.
,
Schmitt
,
K.-U.
,
Gutsche
,
A.
, and
Tomasch
,
E.
,
2013
, “
ADSEAT—Adaptive Seat to Reduce Neck Injuries for Female and Male Occupants
,”
Accid. Anal. Prev.
,
60
, pp.
334
343
.
27.
Carlsson
,
A.
,
Chang
,
F.
,
Lemmen
,
P.
,
Kullgren
,
A.
,
Schmitt
,
K.-U.
,
Linder
,
A.
, and
Svensson
,
M. Y.
,
2014
, “
Anthropometric Specifications, Development, and Evaluation of EvaRID—A 50th Percentile Female Rear Impact Finite Element Dummy Model
,”
Traffic Inj. Prev.
,
15
(
8
), pp.
855
865
.
28.
Vasavada
,
A.
,
Danaraj
,
J.
, and
Siegmund
,
G.
,
2008
, “
Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women
,”
J. Biomech.
,
41
(
1
), pp.
114
121
.
29.
Mordaka
,
J.
,
2004
, “
Finite Element Analysis of Whiplash Injury for Women
,” Ph.D. thesis, Nottingham Trent University, Nottingham, UK.
30.
Gonzales Carcedo
,
M.
, and
Brolin
,
K.
,
2012
, “
Generation of Numerical Human Models Based on Medical Imaging
,” Chalmers University of Technology, Gothenburg, Sweden. Technical Report No. 2012:01.
31.
Sato
,
F.
,
Odani
,
M.
,
Endo
,
Y.
,
Tada
,
M.
,
Myiazaki
,
Y.
,
Nakajima
,
T.
,
Ono
,
K.
,
Morikawa
,
S.
, and
Svensson
,
M.
,
2015
, “
Analysis of the Alignment of Whole Spine in Automotive Seated and Supine Postures Using and Upright Open MRI System
,”
JSAE Conference
, Yokohama, Japan, May 20–22, Paper No. 20155331.
32.
van Mameren
,
H.
,
Sanches
,
H.
,
Beursgens
,
J.
, and
Drucker
,
J.
,
1992
, “
Cervical Spine Motion in the Sagittal Plane II: Position of Segmental Averaged Instantaneous Centers of Rotation—A Cineradiography Study
,”
Spine
,
17
(
5
), pp.
467
474
.
33.
Panjabi
,
M. M.
,
Chen
,
N. C.
,
Shin
,
E. K.
, and
Wang
,
J.-L.
,
2001
, “
The Cortical Shell Architecture of Human Cervical Vertebral Bodies
,”
Spine
,
26
(
22
), pp.
2478
2484
.
34.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
, V
. H.
,
1974
, “
The Elastic Modulus for Bone
,”
J. Biomech.
,
7
(
3
), pp.
271
275
.
35.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.
36.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Aktay
,
R.
,
Shender
,
B. S.
,
Paskoff
,
G.
, and
Laud
,
P.
,
2006
, “
Trabecular Bone Density of Male Human Cervical and Lumbar Vertebrae
,”
Bone
,
39
(
2
), pp.
336
344
.
37.
Yamada
,
H.
,
1970
,
Strength of Biological Materials
,
Williams & Wilkins
,
Baltimore, MD
.
38.
Iatridis
,
J. C.
,
Weidenbaum
,
M.
,
Setton
,
L. A.
, and
Mow
, V
. C.
,
1996
, “
Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc
,”
Spine
,
21
(
10
), pp.
1174
1184
.
39.
Yang
,
K. H.
, and
Kish
, V
. L.
,
1988
, “
Compressibility Measurements of Human Intervertebral Nucleus Pulposus
,”
J. Biomech.
,
21
(
10
), p.
865
.
40.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
, V
. C.
,
1998
, “
Degeneration Affects the Anisotropic and Non-Linear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.
41.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.
42.
Holzapfel
,
G. A.
,
Shulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
43.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
, V
. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.
44.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.
45.
Mattucci
,
S. F. E.
, and
Cronin
,
D. S.
,
2015
, “
A Method to Characterize Average Cervical Spine Ligament Response Based on Raw Data Sets for Implementation Into Injury Biomechanics Models
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
251
260
.
46.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.
47.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2013
, “
Strain Rate Dependent Properties of Human Craniovertebral Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
71
79
.
48.
Little
,
J. S.
, and
Khalsa
,
P. S.
,
2005
, “
Material Properties of the Human Lumbar Facet Joint Capsule
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
15
24
.
49.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.
50.
Dvorak
,
J.
,
Schneider
,
E.
,
Saldinger
,
P.
, and
Rahn
,
B.
,
1988
, “
Biomechanics of the Craniocervical Region: The Alar and Transverse Ligaments
,”
J. Orthop. Res.
,
6
(
3
), pp.
452
461
.
51.
Myklebust
,
J. B.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Cusick
,
J. F.
,
Maiman
,
D.
,
Myers
,
T. J.
, and
Sances
,
A.
, Jr
.,
1988
, “
Tensile Strength of Spinal Ligaments
,”
Spine
,
13
(5), pp.
526
531
.
52.
Panjabi
,
M. M.
,
Oxland
,
T. R.
, and
Parks
,
E. H.
,
1991
, “
Quantitative Anatomy of Cervical Spine Ligaments. Part II. Middle and Lower Cervical Spine
,”
J. Spinal Disord.
,
4
(
3
), pp.
277
285
.
53.
Mercer
,
S.
,
Phty
,
B.
, and
Bogduk
,
N.
,
1999
, “
The Ligaments and Anulus Fibrosus of Human Adult Cervical Intervertebral Discs
,”
Spine
,
24
(
7
), pp.
619
628
.
54.
Standring
,
S.
(ed.),
2008
,
Gray's Anatomy—The Anatomical Basis of Clinical Practice
,
Elsevier Churchill Livingstone
,
London
.
55.
Panjabi
,
M. M.
,
Oxland
,
T. R.
, and
Parks
,
E. H.
,
1991
, “
Quantitative Anatomy of Cervical Spine Ligaments. Part I. Upper Cervical Spine
,”
J. Spinal Disord.
,
4
(3), pp.
270
276
.
56.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Collateral Medial Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.
57.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(
6
), pp.
725
732
.
58.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.
59.
Panjabi
,
M. M.
,
Summers
,
D. J.
,
Pelker
,
R. R.
,
Videman
,
T.
,
Friedlander
,
G. E.
, and
Southwick
,
W. O.
,
1986
, “
Three-Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine
,”
J. Ortho. Res.
,
4
(
2
), pp.
152
161
.
60.
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2012
, “
Investigation of Whiplash Injuries in the Upper Cervical Spine Using a Detailed Neck Model
,”
J. Biomech.
,
45
(
6
), pp.
1098
1102
.
61.
Cronin
,
D. S.
,
2014
, “
Finite Element Modelling of Potential Cervical Spine Pain Sources in Neutral Position Low Speed Rear Impact
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
55
66
.
62.
Francis
,
C. C.
,
1955
, “
Dimensions of the Cervical Vertebrae
,”
Anat. Rec.
,
122
(
4
), pp.
603
609
.
63.
Burkhart
,
T. A.
,
Andrews
,
D. M.
, and
Dunning
,
C. E.
,
2013
, “
Finite Element Mesh Quality, Energy Balance and Validation Methods: A Review With Recommendations Associated With the Modeling of Bone Tissue
,”
J. Biomech.
,
46
(
9
), pp.
1477
1488
.
64.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Maiman
,
J.
,
Cusick
,
J. F.
,
Sances
,
A.
, Jr.
, and
Walsh
,
P. S.
,
1996
, “
Human Head-Neck Biomechanics Under Axial Tension
,”
Med. Eng. Phys.
,
18
(
4
), pp.
289
294
.
65.
Schmitt
,
K.-U.
,
Weber
,
T.
,
Svensson
,
M.
,
Davidsson
,
J.
,
Carlsson
,
A.
,
Björklund
,
M.
,
Jakobsson
,
L.
,
Tomasch
,
E.
, and
Linder
,
A.
,
2012
, “
Seat Testing to Investigate the Female Neck Injury Risk—Preliminary Results Using a New Female Dummy Prototype
,”
International IRCOBI Conference on the Biomechanics of Impact, Dublin, Ireland, Sept. 12–14
, p.
s263
.
66.
Ono
,
K.
,
Kaneoka
,
K.
,
Wittek
,
A.
, and
Kajzer
,
J.
,
1997
, “
Cervical Injury Mechanism Based on the Analysis of Human Cervical Vertebral Motion and Head-Neck-Torso Kinematics During Low-Speed Rear Impacts
,”
41st Stapp Car Crash Conference
, Lake Buena Vista, FL, Nov. 13–14, pp.
339
356
.
67.
de Bruijn
,
E.
,
van der Helm
,
F. C. T.
, and
Happee
,
R.
,
2015
, “
Analysis of Isometric Cervical Strength With a Nonlinear Musculoskeletal Model With 48 Degrees of Freedom
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
339
362
.
68.
Bonet
,
J.
, and
Burton
,
A. J.
,
1998
, “
A Simple Average Nodal Pressure Tetrahedral Element for Incompressible and Nearly Incompressible Dynamic Explicit Applications
,”
Commun. Numer. Methods Eng.
,
14
(
5
), pp.
437
449
.
69.
Nightingale
,
R. W.
,
Chancey
, V
. C.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
,
2007
, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
,
40
(
3
), pp.
535
542
.
70.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2004
, “
Gender- and Region-Dependent Local Facet Joint Kinematics in Rear Impact
,”
Spine
,
29
(
16
), pp.
1764
1771
.
You do not currently have access to this content.