A number of robotic exoskeletons are being developed to provide rehabilitation interventions for those with movement disabilities. We present a systematic framework that allows for virtual prototyping (i.e., design, control, and experimentation (i.e. design, control, and experimentation) of robotic exoskeletons. The framework merges computational musculoskeletal analyses with simulation-based design techniques which allows for exoskeleton design and control algorithm optimization. We introduce biomechanical, morphological, and controller measures to optimize the exoskeleton performance. A major advantage of the framework is that it provides a platform for carrying out hypothesis-driven virtual experiments to quantify device performance and rehabilitation progress. To illustrate the efficacy of the framework, we present a case study wherein the design and analysis of an index finger exoskeleton is carried out using the proposed framework.

References

References
1.
Prange
,
G.
,
Jannink
,
M.
,
Groothuis-Oudshoorn
,
C.
,
Hermens
,
H.
, and
Ijzerman
,
M.
,
2006
, “
Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm After Stroke
,”
J. Rehabil. Res. Dev.
,
43
(
2
), pp.
171
184
.
2.
Takahashi
,
C. D.
,
Der-Yeghiaian
,
L.
,
Le
,
V.
,
Motiwala
,
R. R.
, and
Cramer
,
S. C.
,
2008
, “
Robot-Based Hand Motor Therapy After Stroke
,”
Brain
,
131
(
2
), pp.
425
437
.
3.
Langhorne
,
P.
,
Coupar
,
F.
, and
Pollock
,
A.
,
2009
, “
Motor Recovery After Stroke: A Systematic Review
,”
Lancet Neurol.
,
8
(
8
), pp.
741
754
.
4.
Hwang
,
C. H.
,
Seong
,
J. W.
, and
Son
,
D. S.
,
2012
, “
Individual Finger Synchronized Robot-Assisted Hand Rehabilitation in Subacute to Chronic Stroke: A Prospective Randomized Clinical Trial of Efficacy
,”
Clin. Rehabil.
,
26
(
8
), pp.
696
704
.
5.
Dollar
,
A.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
6.
Hugh
,
H.
,
2009
, “
Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions
,”
J. NeuroEng. Rehabil.
,
6
, p.
21
.
7.
Heo
,
P.
,
Gu
,
G.
,
Lee
,
S.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
.
8.
Agarwal
,
P.
,
Fox
,
J.
,
Yun
,
Y.
,
O'Malley
,
M. K.
, and
Deshpande
,
A. D.
,
2015
, “
An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1747
1772
.
9.
Agarwal
,
P.
, and
Deshpande
,
A. D.
,
2015
, “
Impedance and Force-Field Control of the Index Finger Module of a Hand Exoskeleton for Rehabilitation
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
85
90
.
10.
Emken
,
J.
,
Bobrow
,
J.
, and
Reinkensmeyer
,
D.
,
2005
, “
Robotic Movement Training as an Optimization Problem: Designing a Controller That Assists Only as Needed
,”
9th International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, IL, June 28-July 1, pp.
307
312
.
11.
Agarwal
,
P.
,
Fernandez
,
B. R.
, and
Deshpande
,
A. D.
,
2015
, “
Assist-as-Needed Controllers for Index Finger Module of a Hand Exoskeleton for Rehabilitation
,”
ASME
Paper No. DSCC2015-9790.
12.
Gupta
,
A.
,
O'Malley
,
M. K.
,
Patoglu
,
V.
, and
Burgar
,
C.
,
2008
, “
Design, Control and Performance of Ricewrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
233
251
.
13.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
.
14.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.
15.
Acosta-Marquez
,
C.
, and
Bradley
,
D.
,
2005
, “
The Analysis, Design and Implementation of a Model of an Exoskeleton to Support Mobility
,”
9th IEEE International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, IL, June 28-July 1, pp.
99
102
.
16.
Chiri
,
A.
,
Vitiello
,
N.
,
Giovacchini
,
F.
,
Roccella
,
S.
,
Vecchi
,
F.
, and
Carrozza
,
M.
,
2012
, “
Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
884
894
.
17.
Wang
,
G.
,
2002
, “
Definition and Review of Virtual Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
3
), pp.
232
236
.
18.
MusculoGraphics
,
2016
, “
SIMM Software Suite
,”
MusculoGraphics, Inc.
,
Santa Rosa, CA
, http://www.musculographics.com
19.
Delp
,
S.
,
Anderson
,
F.
,
Arnold
,
A.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C.
,
Guendelman
,
E.
, and
Thelen
,
D.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
20.
AnyBody Technology
,
2016
, “
The AnyBody Modeling System
,” AnyBody Technology A/S, Aalborg, Denmark, http://www.anybodytech.com
21.
LifeModeler
,
2016
, “
Bringing Simulation to Life
,” LifeModeler Inc., San Clemente, CA, http://www.lifemodeler.com
22.
Edmund
,
C.
,
Robert
,
A.
,
Hiroaki
,
Y.
,
Jonathan
,
L.
, and
Naoki
,
H.
,
2007
, “
Virtual Interactive Musculoskeletal System (VIMS) in Orthopaedic Research, Education and Clinical Patient Care
,”
J. Orthop. Surg. Res.
,
2
(
1
), pp.
25
40
.
23.
Agarwal
,
P.
,
Narayanan
,
M.
,
Lee
,
L.
,
Mendel
,
F.
, and
Krovi
,
V.
,
2010
, “
Simulation-Based Design of Exoskeletons Using Musculoskeletal Analysis
,”
ASME
Paper No. DETC2010-28572.
24.
Cho
,
K.
,
Kim
,
Y.
,
Yi
,
D.
,
Jung
,
M.
, and
Lee
,
K.
,
2012
, “
Analysis and Evaluation of a Combined Human-Exoskeleton Model Under Two Different Constraints Condition
,”
International Summit on Human Simulation
(
ISHS
), St. Pete Beach, FL, May 23–25.
25.
Zhou
,
L.
,
Bai
,
S.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2015
, “
Modeling and Design of a Spring-Loaded, Cable-Driven, Wearable Exoskeleton for the Upper Extremity
,”
Model. Identif. Control
,
36
(
3
), pp.
167
177
.
26.
Ferrati
,
F.
,
Bortoletto
,
R.
, and
Pagello
,
E.
,
2013
, “
Virtual Modelling of a Real Exoskeleton Constrained to a Human Musculoskeletal Model
,”
Biomimetic Biohybrid Syst.
,
8064
, pp.
96
107
.
27.
Agarwal
,
P.
,
Kuo
,
P.
,
Neptune
,
R. R.
, and
Deshpande
,
A. D.
,
2013
, “
A Novel Framework for Virtual Prototyping of Rehabilitation Exoskeletons
,”
IEEE International Conference on Rehabilitation Robotics
, (
ICORR
), Seattle, WA, June 24–26.
28.
Agarwal
,
P.
,
Kuo
,
P.
,
Neptune
,
R. R.
, and
Deshpande
,
A. D.
,
2013
,
Integration of Musculoskeletal Analysis With Engineering Design for Virtual Prototyping of Exoskeletons
,
American Society of Biomechanics
,
Omaha, NE
.
29.
Agarwal
,
P.
,
Hechanova
,
A.
, and
Deshpande
,
A.
,
2013
, “
Kinematics and Dynamics of a Biologically Inspired Index Finger Exoskeleton
,”
ASME
Paper No. DSCC2013-3893.
30.
Hogan
,
N.
,
1984
, “
Impedance Control: An Approach to Manipulation
,”
American Control Conference
(
ACC
), San Diego, CA, June 6–8, pp.
304
313
.
31.
Cai
,
L. L.
,
Fong
,
A. J.
,
Liang
,
Y.
,
Burdick
,
J.
, and
Edgerton
,
V. R.
,
2006
, “
Assist-as-Needed Training Paradigms for Robotic Rehabilitation of Spinal Cord Injuries
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
3504
3511
.
32.
Jones
,
L. A.
, and
Lederman
,
S. J.
,
2006
,
Human Hand Function
,
Oxford University Press
,
New York
.
33.
Holzbaur
,
K.
,
Murray
,
W.
,
Gold
,
G.
, and
Delp
,
S.
,
2007
, “
Upper Limb Muscle Volumes in Adult Subjects
,”
J. Biomech.
,
40
(
4
), pp.
742
749
.
34.
Kuo
,
P. H.
, and
Deshpande
,
A.
,
2012
, “
Muscle-Tendon Units Provide Limited Contributions to the Passive Stiffness of the Index Finger Metacarpophalangeal Joint
,”
J. Biomech.
,
45
(
15
), pp.
2531
2538
.
35.
Deshpande
,
A.
,
Gialias
,
N.
, and
Matsuoka
,
Y.
,
2012
, “
Contributions of Intrinsic Visco-Elastic Torques During Planar Index Finger and Wrist Movements
,”
IEEE Trans. Biomed. Eng.
,
59
(
2
), pp.
586
594
.
36.
Karnati
,
N.
,
Kent
,
B. A.
, and
Engeberg
,
E. D.
,
2013
, “
Bioinspired Sinusoidal Finger Joint Synergies for a Dexterous Robotic Hand to Screw and Unscrew Objects With Different Diameters
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
612
623
.
37.
Rijpkema
,
H.
, and
Girard
,
M.
,
1991
, “
Computer Animation of Knowledge-Based Human Grasping
,”
ACM SIGGRAPH Computer Graphics
,
25
(
4
), pp.
339
348
.
38.
An
,
K.
,
Ueba
,
Y.
,
Chao
,
E.
,
Cooney
,
W.
, and
Linscheid
,
R.
,
1983
, “
Tendon Excursion and Moment Arm of Index Finger Muscles
,”
J. Biomech.
,
16
(
6
), pp.
419
425
.
39.
Fowler
,
N.
,
Nicol
,
A.
,
Condon
,
B.
, and
Hadley
,
D.
,
2001
, “
Method of Determination of Three Dimensional Index Finger Moment Arms and Tendon Lines of Action Using High Resolution MRI Scans
,”
J. Biomech.
,
34
(
6
), pp.
791
797
.
40.
Martin
,
J.
,
Latash
,
M.
, and
Zatsiorsky
,
V.
,
2012
, “
Effects of the Index Finger Position and Force Production on the Flexor Digitorum Superficialis Moment Arms at the Metacarpophalangeal Joints: A Magnetic Resonance Imaging Study
,”
Clin. Biomech.
,
27
(
5
), pp.
453
459
.
41.
Snijders
,
J.
,
Visser
,
J.
,
Korstanje
,
J.
,
Selles
,
R.
, and
Veeger
,
H.
,
2011
, “
Estimation of In-Vivo Muscle Moment Arms Around the MCP Joint Using Ultrasound
,” Master's thesis, Delft University of Technology, Delft, The Netherlands.
42.
Gatti
,
C.
, and
Hughes
,
R.
,
2009
, “
Optimization of Muscle Wrapping Objects Using Simulated Annealing
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1342
1347
.
43.
Byrd
,
R.
,
Hribar
,
M.
, and
Nocedal
,
J.
,
1999
, “
An Interior Point Algorithm for Large-Scale Nonlinear Programming
,”
SIAM J. Optim.
,
9
(
4
), pp.
877
900
.
44.
Thelen
,
D.
, and
Anderson
,
F.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.
45.
Emery
,
A. E.
,
2002
, “
The Muscular Dystrophies
,”
Lancet
,
359
(
9307
), pp.
687
695
.
46.
Stokes
,
M.
, and
Young
,
A.
,
1984
, “
The Contribution of Reflex Inhibition to Arthrogenous Muscle Weakness
,”
Clin. Sci.
,
67
(
1
), pp.
7
14
.
47.
Brand
,
P. W.
, and
Hollister
,
A.
,
1999
,
Clinical Mechanics of the Hand
,
Mosby
,
St. Louis, MO
.
48.
Vigouroux
,
L.
,
Quaine
,
F.
,
Labarre-Vila
,
A.
, and
Moutet
,
F.
,
2006
, “
Estimation of Finger Muscle Tendon Tensions and Pulley Forces During Specific Sport-Climbing Grip Techniques
,”
J. Biomech.
,
39
(
14
), pp.
2583
2592
.
49.
Wu
,
Y.-N.
,
Park
,
H. S.
,
Ren
,
Y.
,
Gaebler-Spira
,
D.
,
Chen
,
J.-J.
, and
Zhang
,
L.-Q.
,
2006
, “
Measurement of Elbow Spasticity in Stroke Patients Using a Manual Spasticity Evaluator
,”
IEEE Engineering in Medicine and Biology Society
(
EMBS '06
), New York, Aug. 30–Sept. 3, pp.
3974
3977
.
50.
Peng
,
Q.
,
Shah
,
P.
,
Selles
,
R. W.
,
Gaebler-Spira
,
D. J.
, and
Zhang
,
L.-Q.
,
2004
, “
Measurement of Ankle Spasticity in Children With Cerebral Palsy Using a Manual Spasticity Evaluator
,”
IEEE Engineering in Medicine and Biology Society
(
IEMBS '04
), San Francisco, CA, Sept. 1–5, pp.
4896
4899
.
51.
Page
,
P.
,
Frank
,
C. C.
, and
Lardner
,
R.
,
2010
,
Assessment and Treatment of Muscle Imbalance
,
Human Kinetics
,
Champaign, IL
.
52.
O'Dwyer
,
N. J.
,
Ada
,
L.
, and
Neilson
,
P. D.
,
1996
, “
Spasticity and Muscle Contracture Following Stroke
,”
Brain
,
119
(
5
), pp.
1737
1749
.
53.
Chao
,
E.
,
Opgrande
,
J.
, and
Axmear
,
F.
,
1976
, “
Three-Dimensional Force Analysis of Finger Joints in Selected Isometric Hand Functions
,”
J. Biomech.
,
9
(
6
), pp.
387
396
.
54.
Moran
,
J. M.
,
Hemann
,
J. H.
, and
Greenwald
,
A. S.
,
1985
, “
Finger Joint Contact Areas and Pressures
,”
J. Orthop. Res.
,
3
(
1
), pp.
49
55
.
55.
Milner
,
T.
, and
Cloutier
,
C.
,
1998
, “
Damping of the Wrist Joint During Voluntary Movement
,”
Exp. Brain Res.
,
122
(
3
), pp.
309
317
.
56.
Given
,
J.
,
Dewald
,
J.
, and
Rymer
,
W.
,
1995
, “
Joint Dependent Passive Stiffness in Paretic and Contralateral Limbs of Spastic Patients With Hemiparetic Stroke
,”
J. Neurol. Neurosurg. Psychiatry
,
59
(
3
), pp.
271
279
.
You do not currently have access to this content.