There is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue. The MPM imaging revealed that there are generally two families of collagen fibers distributed in two distinct layers: The first family largely aligns along the longitudinal direction with a mean angle of θ = 10.7 ± 9.3 deg, while the second one exhibits a random distribution with a mean θ = 36.6 ± 27.4. Elastin fibers appear in some intermediate sublayers with a random orientation distribution with a mean θ = 39.6 ± 23 deg. Based on the microstructural observation, a microstructure-based constitutive law was proposed to model the elastic property of the tissue. The material parameters were identified by fitting the model to the biaxial stress–strain data of specimens, and good fitting quality was achieved. The parameter e0 (which denotes the strain beyond which the collagen can withstand tension) of glutaraldehyde-treated tissues demonstrated low variability implying a relatively consistent collagen undulation in different samples, while the stiffness parameters for elastin and collagen fibers showed relatively greater variability. The fixed tissues presented a smaller e0 than that of fresh specimen, confirming that glutaraldehyde crosslinking increases the mechanical strength of collagen-based biomaterials. The present study sheds light on the biomechanics of glutaraldehyde-treated porcine pulmonary ligament that may be a candidate for tissue engineering.

References

References
1.
Duan
,
X.
, and
Sheardown
,
H.
,
2006
, “
Dendrimer Crosslinked Collagen as a Corneal Tissue Engineering Scaffold: Mechanical Properties and Corneal Epithelial Cell Interactions
,”
Biomaterials
,
27
(
26
), pp.
4608
4617
.
2.
Geiger
,
M.
,
Li
,
R. H.
, and
Friess
,
W.
,
2003
, “
Collagen Sponges for Bone Regeneration With rhBMP-2
,”
Adv. Drug Delivery Rev.
,
55
(
12
), pp.
1613
1629
.
3.
Cooper
,
C.
,
Moss
,
A. A.
,
Buy
,
J. N.
, and
Stark
,
D. D.
,
1983
, “
CT Appearance of the Normal Inferior Pulmonary Ligament
,”
Am. J. Roentgenol.
,
141
(
2
), pp.
237
240
.
4.
Godwin
,
J. D.
,
Vock
,
P.
, and
Osborne
,
D. R.
,
1983
, “
CT of the Pulmonary Ligament
,”
Am. J. Roentgenol.
,
141
(
2
), pp.
231
236
.
5.
Rabinowitz
,
J. G.
, and
Wolf
,
B. S.
,
1966
, “
Roentgen Significance of the Pulmonary Ligament
,”
Radiology
,
87
(
6
), pp.
1013
1020
.
6.
DeLaria
,
G. A.
,
Phifer
,
T.
,
Roy
,
J.
,
Tu
,
R.
,
Thyagarajan
,
K.
, and
Quijano
,
R. C.
,
1993
, “
Hemodynamic Evaluation of a Bioprosthetic Venous Prosthesis
,”
J. Vasc. Surg.
,
18
(
4
), pp.
577
584
; discussion 584–586.
7.
Vesely
,
I.
,
2005
, “
Heart Valve Tissue Engineering
,”
Circ. Res.
,
97
(
8
), pp.
743
755
.
8.
Haugh
,
M. G.
,
Murphy
,
C. M.
,
McKiernan
,
R. C.
,
Altenbuchner
,
C.
, and
O'Brien
,
F. J.
,
2011
, “
Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds
,”
Tissue Eng. Part A
,
17
(
9–10
), pp.
1201
1208
.
9.
Xu
,
B.
,
Chow
,
M.-J.
,
Zhang
,
Y.
,
Xu
,
B.
,
Chow
,
M.-J.
, and
Zhang
,
Y.
,
2011
, “
Experimental and Modeling Study of Collagen Scaffolds With the Effects of Crosslinking and Fiber Alignment
,”
Int. J. Biomater.
,
2011
, p.
172389
.
10.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
11.
Vesely
,
I.
, and
Lozon
,
A.
,
1993
, “
Natural Preload of Aortic Valve Leaflet Components During Glutaraldehyde Fixation: Effects on Tissue Mechanics
,”
J. Biomech.
,
26
(
2
), pp.
121
131
.
12.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
13.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
A New Constitutive Model for Multi-Layered Collagenous Tissues
,”
J. Biomech.
,
41
(
12
), pp.
2766
2771
.
14.
Chen
,
H.
,
Luo
,
T.
,
Zhao
,
X.
,
Lu
,
X.
,
Huo
,
Y.
, and
Kassab
,
G. S.
,
2013
, “
Microstructural Constitutive Model of Active Coronary Media
,”
Biomaterials
,
34
(
31
), pp.
7575
7583
.
15.
Hollander
,
Y.
,
Durban
,
D.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Lanir
,
Y.
,
2011
, “
Experimentally Validated Micro Structural 3D Constitutive Model of Coronary Arterial Media
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031007
.
16.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
17.
Chen
,
H.
,
Liu
,
Y.
,
Zhao
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
,
2011
, “
A Micromechanics Finite-Strain Constitutive Model of Fibrous Tissue
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1823
1837
.
18.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2004
, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
,
37
(
7
), pp.
989
1000
.
19.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
,
12
(
6
), pp.
423
436
.
20.
Dahl
,
S. L. M.
,
Vaughn
,
M. E.
, and
Niklason
,
L. E.
,
2007
, “
An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1749
1755
.
21.
Einat
,
R.
, and
Yoram
,
L.
,
2009
, “
Recruitment Viscoelasticity of the Tendon
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111008
.
22.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P. A.
,
1990
, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
112
(
4
), pp.
414
425
.
23.
Lokshin
,
O.
, and
Lanir
,
Y.
,
2009
, “
Micro and Macro Rheology of Planar Tissues
,”
Biomaterials
,
30
(
17
), pp.
3118
3127
.
24.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
25.
Campagnola
,
P. J.
,
Clark
,
H. A.
,
Mohler
,
W. A.
,
Lewis
,
A.
, and
Loew
,
L. M.
,
2001
, “
Second-Harmonic Imaging Microscopy of Living Cells
,”
J. Biomed. Opt.
,
6
(
3
), pp.
277
286
.
26.
Gauderon
,
R.
,
Lukins
,
P. B.
, and
Sheppard
,
C. J.
,
2001
, “
Optimization of Second-Harmonic Generation Microscopy
,”
Micron
,
32
(
7
), pp.
691
700
.
27.
Chen
,
H.
,
Liu
,
Y.
,
Slipchenko
,
M. N.
,
Zhao
,
X.
,
Cheng
,
J.-X.
, and
Kassab
,
G. S.
,
2011
, “
The Layered Structure of Coronary Adventitia Under Mechanical Load
,”
Biophys. J.
,
101
(
11
), pp.
2555
2562
.
28.
Chen
,
H.
,
Slipchenko
,
M. N.
,
Liu
,
Y.
,
Zhao
,
X.
,
Cheng
,
J.-X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
,
2013
, “
Biaxial Deformation of Collagen and Elastin Fibers in Coronary Adventitia
,”
J. Appl. Physiol.
,
115
(
11
), pp.
1683
1693
.
29.
Mansfield
,
J.
,
Yu
,
J.
,
Attenburrow
,
D.
,
Moger
,
J.
,
Tirlapur
,
U.
,
Urban
,
J.
,
Cui
,
Z.
, and
Winlove
,
P.
,
2009
, “
The Elastin Network: Its Relationship With Collagen and Cells in Articular Cartilage as Visualized by Multiphoton Microscopy
,”
J. Anat.
,
215
(
6
), pp.
682
691
.
30.
Raub
,
C. B.
,
Unruh
,
J.
,
Suresh
,
V.
,
Krasieva
,
T.
,
Lindmo
,
T.
,
Gratton
,
E.
,
Tromberg
,
B. J.
, and
George
,
S. C.
,
2008
, “
Image Correlation Spectroscopy of Multiphoton Images Correlates With Collagen Mechanical Properties
,”
Biophys. J.
,
94
(
6
), pp.
2361
2373
.
31.
Schriefl
,
A. J.
,
Reinisch
,
A. J.
,
Sankaran
,
S.
,
Pierce
,
D. M.
, and
Holzapfel
,
G. A.
,
2012
, “
Quantitative Assessment of Collagen Fibre Orientations From Two-Dimensional Images of Soft Biological Tissues
,”
J. R. Soc., Interface
,
9
(
76
), pp.
3081
3093
.
32.
Chow
,
M.-J.
,
Turcotte
,
R.
,
Lin
,
C. P.
, and
Zhang
,
Y.
,
2014
, “
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
,”
Biophys. J.
,
106
(
12
), pp.
2684
2692
.
33.
Fata
,
B.
,
Carruthers
,
C. A.
,
Gibson
,
G.
,
Watkins
,
S. C.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021022
.
34.
Timmins
,
L. H.
,
Wu
,
Q.
,
Yeh
,
A. T.
,
Moore
,
J. E.
, and
Greenwald
,
S. E.
,
2010
, “
Structural Inhomogeneity and Fiber Orientation in the Inner Arterial Media
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
298
(
5
), pp.
H1537
H1545
.
35.
Zoumi
,
A.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Tromberg
,
B. J.
,
2004
, “
Imaging Coronary Artery Microstructure Using Second-Harmonic and Two-Photon Fluorescence Microscopy
,”
Biophys. J.
,
87
(
4
), pp.
2778
2786
.
36.
Kato
,
Y. P.
,
Christiansen
,
D. L.
,
Hahn
,
R. A.
,
Shieh
,
S. J.
,
Goldstein
,
J. D.
, and
Silver
,
F. H.
,
1989
, “
Mechanical Properties of Collagen Fibres: A Comparison of Reconstituted and Rat Tail Tendon Fibres
,”
Biomaterials
,
10
(
1
), pp.
38
42
.
37.
Minns
,
R. J.
,
Soden
,
P. D.
, and
Jackson
,
D. S.
,
1973
, “
The Role of the Fibrous Components and Ground Substance in the Mechanical Properties of Biological Tissues: A Preliminary Investigation
,”
J. Biomech.
,
6
(
2
), pp.
153
165
.
38.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1964
, “
Structural Basis for the Static Mechanical Properties of the Aortic Media
,”
Circ. Res.
,
14
(
5
), pp.
400
413
.
39.
Bailey
,
A. J.
,
Light
,
N. D.
, and
Atkins
,
E. D. T.
,
1980
, “
Chemical Cross-Linking Restrictions on Models for the Molecular Organization of the Collagen Fibre
,”
Nature
,
288
(
5789
), pp.
408
410
.
40.
Khor
,
E.
,
1997
, “
Methods for the Treatment of Collagenous Tissues for Bioprostheses
,”
Biomaterials
,
18
(
2
), pp.
95
105
.
41.
Weadock
,
K.
,
Olson
,
R. M.
, and
Silver
,
F. H.
,
1983
, “
Evaluation of Collagen Crosslinking Techniques
,”
Biomater., Med. Dev., Artif. Organs
,
11
(
4
), pp.
293
318
.
42.
Sheu
,
M.-T.
,
Huang
,
J.-C.
,
Yeh
,
G.-C.
, and
Ho
,
H.-O.
,
2001
, “
Characterization of Collagen Gel Solutions and Collagen Matrices for Cell Culture
,”
Biomaterials
,
22
(
13
), pp.
1713
1719
.
43.
Gauvin
,
R.
,
Marinov
,
G.
,
Mehri
,
Y.
,
Klein
,
J.
,
Li
,
B.
,
Larouche
,
D.
,
Guzman
,
R.
,
Zhang
,
Z.
,
Germain
,
L.
, and
Guidoin
,
R.
,
2013
, “
A Comparative Study of Bovine and Porcine Pericardium to Highlight Their Potential Advantages to Manufacture Percutaneous Cardiovascular Implants
,”
J. Biomater. Appl.
,
28
(
4
), pp.
552
565
.
44.
Lam
,
M. T.
, and
Wu
,
J. C.
,
2012
, “
Biomaterial Applications in Cardiovascular Tissue Repair and Regeneration
,”
Expert Rev. Cardiovasc. Ther.
,
10
(
8
), pp.
1039
1049
.
45.
Aguiari
,
P.
,
Fiorese
,
M.
,
Iop
,
L.
,
Gerosa
,
G.
, and
Bagno
,
A.
,
2015
, “
Mechanical Testing of Pericardium for Manufacturing Prosthetic Heart Valves
,”
Interact. Cardiovasc. Thorac. Surg.
,
22
(
1
), pp.
72
84
.
46.
Inoue
,
H.
,
Iguro
,
Y.
,
Matsumoto
,
H.
,
Ueno
,
M.
,
Higashi
,
A.
, and
Sakata
,
R.
,
2009
, “
Right Hemi-Reconstruction of the Left Atrium Using Two Equine Pericardial Patches for Recurrent Malignant Fibrous Histiocytoma: Report of a Case
,”
Surg. Today
,
39
(
8
), pp.
710
712
.
47.
Shinn
,
S. H.
,
Sung
,
K.
,
Park
,
P. W.
,
Lee
,
Y. T.
,
Kim
,
W. S.
,
Yang
,
J.-H.
,
Jun
,
T.-G.
,
Lee
,
S.-C.
, and
Park
,
S. W.
,
2009
, “
Results of Annular Reconstruction With a Pericardial Patch in Active Infective Endocarditis
,”
J. Heart Valve Dis.
,
18
(
3
), pp.
315
320
.
48.
Delille
,
J. P.
,
Hernigou
,
A.
,
Sene
,
V.
,
Chatellier
,
G.
,
Boudeville
,
J. C.
,
Challande
,
P.
, and
Plainfosse
,
M. C.
,
1999
, “
Maximal Thickness of the Normal Human Pericardium Assessed by Electron-Beam Computed Tomography
,”
Eur. Radiol.
,
9
(
6
), pp.
1183
1189
.
49.
Nam
,
J.
,
Choi
,
S.-Y.
,
Sung
,
S.-C.
,
Lim
,
H.-G.
,
Park
,
S.
,
Kim
,
S.-H.
, and
Kim
,
Y. J.
,
2012
, “
Changes of the Structural and Biomechanical Properties of the Bovine Pericardium After the Removal of α-Gal Epitopes by Decellularization and α-Galactosidase Treatment
,”
Korean J. Thorac. Cardiovasc. Surg.
,
45
(
6
), pp.
380
389
.
50.
Lu
,
S.-H.
,
Sacks
,
M. S.
,
Chung
,
S. Y.
,
Gloeckner
,
D. C.
,
Pruchnic
,
R.
,
Huard
,
J.
,
de Groat
,
W. C.
, and
Chancellor
,
M. B.
,
2005
, “
Biaxial Mechanical Properties of Muscle-Derived Cell Seeded Small Intestinal Submucosa for Bladder Wall Reconstitution
,”
Biomaterials
,
26
(
4
), pp.
443
449
.
51.
Prevel
,
C. D.
,
Eppley
,
B. L.
,
Summerlin
,
D. J.
,
Sidner
,
R.
,
Jackson
,
J. R.
,
McCarty
,
M.
, and
Badylak
,
S. F.
,
1995
, “
Small Intestinal Submucosa: Utilization as a Wound Dressing in Full-Thickness Rodent Wounds
,”
Ann. Plast. Surg.
,
35
(
4
), pp.
381
388
.
52.
Schallberger
,
S. P.
,
Stanley
,
B. J.
,
Hauptman
,
J. G.
, and
Steficek
,
B. A.
,
2008
, “
Effect of Porcine Small Intestinal Submucosa on Acute Full-Thickness Wounds in Dogs
,”
Vet. Surg.
,
37
(
6
), pp.
515
524
.
53.
Boyd
,
W. D.
,
Johnson
,
W. E.
,
Sultan
,
P. K.
,
Deering
,
T. F.
, and
Matheny
,
R. G.
,
2010
, “
Pericardial Reconstruction Using an Extracellular Matrix Implant Correlates With Reduced Risk of Postoperative Atrial Fibrillation in Coronary Artery Bypass Surgery Patients
,”
Heart Surg. Forum
,
13
(
5
), pp.
E311
E316
.
54.
Fallon
,
A.
,
Goodchild
,
T.
,
Wang
,
R.
, and
Matheny
,
R. G.
,
2012
, “
Remodeling of Extracellular Matrix Patch Used for Carotid Artery Repair
,”
J. Surg. Res.
,
175
(
1
), pp.
e25
e34
.
55.
Choy
,
J. S.
,
Mathieu-Costello
,
O.
, and
Kassab
,
G. S.
,
2005
, “
The Effect of Fixation and Histological Preparation on Coronary Artery Dimensions
,”
Ann. Biomed. Eng.
,
33
(
8
), pp.
1027
1033
.
56.
Kothari
,
H.
,
Kaur
,
G.
,
Sahoo
,
S.
,
Idell
,
S.
,
Rao
,
L. V. M.
, and
Pendurthi
,
U.
,
2009
, “
Plasmin Enhances Cell Surface Tissue Factor Activity in Mesothelial and Endothelial Cells
,”
J. Thromb. Haemostasis
,
7
(
1
), pp.
121
131
.
57.
Louagie
,
Y.
,
Legrand-Monsieur
,
A.
,
Remacle
,
C.
,
Maldague
,
P.
,
Lambotte
,
L.
, and
Ponlot
,
R.
,
1986
, “
Morphology and Fibrinolytic Activity of Canine Autogenous Mesothelium Used as Venous Substitute
,”
Res. Exp. Med.
,
186
(
4
), pp.
239
247
.
You do not currently have access to this content.