Abdominal aortic aneurysm (AAA) intervention and surveillance is currently based on maximum transverse diameter, even though it is recognized that this might not be the best strategy. About 10% of patients with small AAA transverse diameters, for whom intervention is not considered, still rupture; while patients with large AAA transverse diameters, for whom intervention would have been recommended, have stable aneurysms that do not rupture. While maximum transverse diameter is easy to measure and track in clinical practice, one of its main drawbacks is that it does not represent the whole AAA and rupture seldom occurs in the region of maximum transverse diameter. By following maximum transverse diameter alone clinicians are missing information on the shape change dynamics of the AAA, and clues that could lead to better patient care. We propose here a method to register AAA surfaces that were obtained from the same patient at different time points. Our registration method could be used to track the local changes of the patient-specific AAA. To achieve registration, our procedure uses a consistent parameterization of the AAA surfaces followed by strain relaxation. The main assumption of our procedure is that growth of the AAA occurs in such a way that surface strains are smoothly distributed, while regions of small and large surface growth can be differentiated. The proposed methodology has the potential to unravel different patterns of AAA growth that could be used to stratify patient risks.

References

References
1.
Patel
,
M. I.
,
Hardman
,
D. T.
,
Fisher
,
C. M.
, and
Appleberg
,
M.
,
1995
, “
Current Views on the Pathogenesis of Abdominal Aortic Aneurysms
,”
J. Am. Coll. Surg.
,
181
, pp.
371
382
.
2.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler. Thromb. Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.
3.
Cosford
,
P. A.
,
Leng
,
G. C.
, and
Thomas
,
J.
,
2007
, “
Screening for Abdominal Aortic Aneurysm
,” Cochrane Database of Systematic Reviews, Cochrane Collaboration, London, Paper No. CD002945.
4.
Darling
,
R. C.
,
Messina
,
C. R.
,
Brewster
,
D. C.
, and
Ottinger
,
L. W.
,
1977
, “
Autopsy Study of Unoperated Abdominal Aortic Aneurysms. The Case for Early Resection
,”
Circulation
,
56
(
3Suppl
), pp.
161
164
.
5.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.
6.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
7.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment
,”
Ann. N. Y. Acad. Sci.
,
1085
(
1
), pp.
11
21
.
8.
Erhart
,
P.
,
Hyhlik-Dürr
,
A.
,
Geisbüsch
,
P.
,
Kotelis
,
D.
,
Müller-Eschner
,
M.
,
Gasser
,
T. C.
,
von Tengg-Kobligk
,
H.
, and
Böckler
,
D.
,
2015
, “
Finite Element Analysis in Asymptomatic, Symptomatic, and Ruptured Abdominal Aortic Aneurysms: In Search of New Rupture Risk Predictors
,”
Eur. J. Vasc. Endovascular Surg.
,
49
(
3
), pp.
239
245
.
9.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovascular Surg.
,
40
(
2
), pp.
176
185
.
10.
Gasser
,
T. C.
,
Nchimi
,
A.
,
Swedenborg
,
J.
,
Roy
,
J.
,
Sakalihasan
,
N.
,
Böckler
,
D.
, and
Hyhlik-Dürr
,
A.
,
2014
, “
A Novel Strategy to Translate the Biomechanical Rupture Risk of Abdominal Aortic Aneurysms to Their Equivalent Diameter Risk: Method and Retrospective Validation
,”
Eur. J. Vasc. Endovascular Surg.
,
47
(
3
), pp.
288
295
.
11.
Polzer
,
S.
,
Gasser
,
T. C.
,
Swedenborg
,
J.
, and
Bursa
,
J.
,
2011
, “
The Impact of Intraluminal Thrombus Failure on the Mechanical Stress in the Wall of Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovascular Surg.
,
41
(
4
), pp.
467
473
.
12.
Boyd
,
A. J.
,
Kuhn
,
D. C. S.
,
Lozowy
,
R. J.
, and
Kulbisky
,
G. P.
,
2015
, “
Low Wall Shear Stress Predominates at Sites of Abdominal Aortic Aneurysm Rupture
,”
J. Vasc. Surg.
(in press).
13.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
14.
Cyron
,
C. J.
,
Wilson
,
J. S.
, and
Humphrey
,
J. D.
,
2014
Mechanobiological Stability: A New Paradigm to Understand the Enlargement of Aneurysms?
,”
J. R. Soc. Interface
,
11
(
100
), p.
20140680
.
15.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.
16.
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2001
, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
528
535
.
17.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
,
43
(
3
), pp.
570
576
.
18.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2003
, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
804
809
.
19.
Doyle
,
B. J.
,
Callanan
,
A.
,
Grace
,
P. A.
, and
Kavanagh
,
E. G.
,
2013
, “
On the Influence of Patient-Specific Material Properties in Computational Simulations: A Case Study of a Large Ruptured Abdominal Aortic Aneurysm
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
2
), pp.
150
164
.
20.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.
21.
Phan
,
L.
,
Rugonyi
,
S.
, and
Grimm
,
C.
, “
Visualization Techniques for the Developing Chicken Heart
,” e-print
arXiv:abs/1509.08834
.
22.
Phan
,
L.
,
Grimm
,
C.
, and
Rugonyi
,
S.
,
2015
, “
Visualization Techniques for the Developing Chicken Heart
,”
11th International Symposium in Advances in Visual Computing
(
ISVC 2015
), Las Vegas, NV, Dec. 14–16, pp.
35
44
.
23.
Brown
,
B. J.
, and
Rusinkiewicz
,
S.
,
2007
, “
Global Non-Rigid Alignment of 3-D Scans
,”
ACM Trans. Graphics
,
26
(
3
), pp.
21
30
.
24.
Liu
,
L.
,
Chambers
,
E. W.
,
Letscher
,
D.
, and
Ju
,
T.
,
2010
, “
A Simple and Robust Thinning Algorithm on Cell Complexes
,”
Comput. Graph. Forum
,
29
(
7
), pp.
2253
2260
.
25.
Kirsanov
,
D.
,
2004
, “
Minimal Discrete Curves and Surfaces
,” Ph.D. thesis,
Harvard University
,
Cambridge, MA
.
26.
Phan
,
L.
,
Knutsen
,
A. K.
,
Bayly
,
P. V.
,
Rugonyi
,
S.
, and
Grimm
,
C.
,
2011
, “
Refining Shape Correspondence for Similar Objects Using Strain
,”
4th Eurographics Conference on 3D Object Retrieval
(
3DOR2011
), Eurographics Association, Llandudno, UK, Apr. 10, pp.
17
24
.
You do not currently have access to this content.