Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion–extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar–sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2–S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17–0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion–extension are likely robust, even when patient alignment is not perfect.

References

1.
Frymoyer
,
J. W.
,
1988
, “
Back Pain and Sciatica
,”
N. Engl. J. Med.
,
318
(
5
), pp.
291
300
.
2.
Katz
,
J. N.
,
2006
, “
Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences
,”
J. Bone Jt. Surg.
,
88
(
Suppl. 2
), pp.
21
24
.
3.
Borenstein
,
D. G.
,
1999
, “
Epidemiology, Etiology, Diagnostic Evaluation, and Treatment of Low Back Pain
,”
Curr. Opin. Rheumatol.
,
11
(
2
), pp.
151
157
.
4.
Takayanagi
,
K.
,
Takahashi
,
K.
,
Yamagata
,
M.
,
Moriya
,
H.
,
Kitahara
,
H.
, and
Tamaki
,
T.
,
2001
, “
Using Cineradiography for Continuous Dynamic-Motion Analysis of the Lumbar Spine
,”
Spine
,
26
(
17
), pp.
1858
1865
.
5.
Okawa
,
A.
,
Shinomiya
,
K.
,
Komori
,
H.
,
Muneta
,
T.
,
Arai
,
Y.
, and
Nakai
,
O.
,
1998
, “
Dynamic Motion Study of the Whole Lumbar Spine by Videofluoroscopy
,”
Spine
,
23
(
16
), pp.
1743
1749
.
6.
Ahmadi
,
A.
,
Maroufi
,
N.
,
Behtash
,
H.
,
Zekavat
,
H.
, and
Parnianpour
,
M.
,
2009
, “
Kinematic Analysis of Dynamic Lumbar Motion in Patients With Lumbar Segmental Instability Using Digital Videofluoroscopy
,”
Eur. Spine J.
,
18
(
11
), pp.
1677
1685
.
7.
Li
,
W.
,
Wang
,
S.
,
Xia
,
Q.
,
Passias
,
P.
,
Kozanek
,
M.
,
Wood
,
K.
, and
Li
,
G.
,
2011
, “
Lumbar Facet Joint Motion in Patients With Degenerative Disc Disease at Affected and Adjacent Levels: An In Vivo Biomechanical Study
,”
Spine
,
36
(
10
), pp.
E629
637
.
8.
Passias
,
P. G.
,
Wang
,
S.
,
Kozanek
,
M.
,
Xia
,
Q.
,
Li
,
W.
,
Grottkau
,
B.
,
Wood
,
K. B.
, and
Li
,
G.
,
2011
, “
Segmental Lumbar Rotation in Patients With Discogenic Low Back Pain During Functional Weight-Bearing Activities
,”
J. Bone Jt. Surg.
,
93
(
1
), pp.
29
37
.
9.
Ferguson
,
S. A.
,
Marras
,
W. S.
,
Burr
,
D. L.
,
Woods
,
S.
,
Mendel
,
E.
, and
Gupta
,
P.
,
2009
, “
Quantification of a Meaningful Change in Low Back Functional Impairment
,”
Spine
,
34
(
19
), pp.
2060
2065
.
10.
Luomajoki
,
H.
,
Kool
,
J.
,
de Bruin
,
E. D.
, and
Airaksinen
,
O.
,
2008
, “
Movement Control Tests of the Low Back; Evaluation of the Difference Between Patients With Low Back Pain and Healthy Controls
,”
BMC Musculoskeletal Disord.
,
9
(
170
), pp.
1
12
.
11.
Marras
,
W. S.
,
Ferguson
,
S. A.
,
Gupta
,
P.
,
Bose
,
S.
,
Parnianpour
,
M.
,
Kim
,
J. Y.
, and
Crowell
,
R. R.
,
1999
, “
The Quantification of Low Back Disorder Using Motion Measures. Methodology and Validation
,”
Spine
,
24
(
20
), pp.
2091
2100
.
12.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.
13.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
,
2006
, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.
14.
Liu
,
F.
,
Cheng
,
J.
,
Komistek
,
R. D.
,
Mahfouz
,
M. R.
, and
Sharma
,
A.
,
2007
, “
In Vivo Evaluation of Dynamic Characteristics of the Normal, Fused, and Disc Replacement Cervical Spines
,”
Spine
,
32
(
23
), pp.
2578
2584
.
15.
Miranda
,
D. L.
,
Schwartz
,
J. B.
,
Loomis
,
A. C.
,
Brainerd
,
E. L.
,
Fleming
,
B. C.
, and
Crisco
,
J. J.
,
2011
, “
Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121002
.
16.
Wang
,
S.
,
Passias
,
P.
,
Li
,
G.
,
Li
,
G.
, and
Wood
,
K.
,
2008
, “
Measurement of Vertebral Kinematics Using Noninvasive Image Matching Method: Validation and Application
,”
Spine
,
33
(
11
), pp.
E355
361
.
17.
Breen
,
A. C.
,
Muggleton
,
J. M.
, and
Mellor
,
F. E.
,
2006
, “
An Objective Spinal Motion Imaging Assessment (OSMIA): Reliability, Accuracy and Exposure Data
,”
BMC Musculoskeletal Disord.
,
7
(
1
), pp.
1
10
.
18.
Teyhen
,
D. S.
,
Flynn
,
T. W.
,
Bovik
,
A. C.
, and
Abraham
,
L. D.
,
2005
, “
A New Technique for Digital Fluoroscopic Video Assessment of Sagittal Plane Lumbar Spine Motion
,”
Spine
,
30
(
14
), pp.
E406
413
.
19.
Zheng
,
Y.
,
Nixon
,
M. S.
, and
Allen
,
R.
,
2003
, “
Lumbar Spine Visualisation Based on Kinematic Analysis From Videofluoroscopic Imaging
,”
Med. Eng. Phys.
,
25
(
3
), pp.
171
179
.
20.
Aiyangar
,
A. K.
,
Zheng
,
L.
,
Tashman
,
S.
,
William
,
J. A.
, and
Xudong
,
Z.
,
2014
, “
Capturing Three-Dimensional In Vivo Lumbar Intervertebral Joint Kinematics Using Dynamic Stereo-X-Ray Imaging
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011004
.
21.
Frobin
,
W.
,
Brinckmann
,
P.
,
Leivseth
,
G.
,
Biggemann
,
M.
, and
Reikeras
,
O.
,
1996
, “
Precision Measurement of Segmental Motion From Flexion-Extension Radiographs of the Lumbar Spine
,”
Clin. Biomech.
,
11
(
8
), pp.
457
465
.
22.
Bifulco
,
P.
,
Sansone
,
M.
,
Cesarelli
,
M.
,
Allen
,
R.
, and
Bracale
,
M.
,
2002
, “
Estimation of Out-of-Plane Vertebra Rotations on Radiographic Projections Using CT Data: A Simulation Study
,”
Med. Eng. Phys.
,
24
(
4
), pp.
295
300
.
23.
Baltali
,
E.
,
Zhao
,
K. D.
,
Koff
,
M. F.
,
Keller
,
E. E.
, and
An
,
K. N.
,
2008
, “
Accuracy and Precision of a Method to Study Kinematics of the Temporomandibular Joint: Combination of Motion Data and CT Imaging
,”
J. Biomech.
,
41
(
11
), pp.
2581
2584
.
24.
Ilharreborde
,
B.
,
Zhao
,
K.
,
Boumediene
,
E.
,
Gay
,
R.
,
Berglund
,
L.
, and
An
,
K. N.
,
2010
, “
A Dynamic Method for In Vitro Multisegment Spine Testing
,”
Orthop. Traumatol. Surg. Res.
,
96
(
4
), pp.
456
461
.
25.
Mettler
,
F. A.
, Jr.
,
Huda
,
W.
,
Yoshizumi
,
T. T.
, and
Mahesh
,
M.
,
2008
, “
Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog
,”
Radiology
,
248
(
1
), pp.
254
263
.
26.
NCRP,
2009
, “
Ionizing Radiation Exposure of the Population of the United States
,” National Council on Radiation Protection and Measurements, Bethesda, MD,
Report No. 160
.
27.
Bland
,
J. M.
, and
Altman
,
D. G.
,
2007
, “
Agreement Between Methods of Measurement With Multiple Observations per Individual
,”
J. Biopharm. Stat.
,
17
(
4
), pp.
571
582
.
28.
Wang
,
S.
,
Passias
,
P.
,
Li
,
G.
,
Li
,
G.
, and
Wood
,
K.
,
2008
, “
Measurement of Vertebral Kinematics Using Noninvasive Image Matching Method-Validation and Application
,”
Spine
,
33
(
11
), pp.
E355
361
.
29.
Victor
,
J.
,
Mueller
,
J. K.
,
Komistek
,
R. D.
,
Sharma
,
A.
,
Nadaud
,
M. C.
, and
Bellemans
,
J.
,
2010
, “
In Vivo Kinematics After a Cruciate-Substituting TKA
,”
Clin. Orthop. Relat. Res.
,
468
(
3
), pp.
807
814
.
You do not currently have access to this content.