Strain gages are commonly used to measure bone strain, but only provide strain at a single location. Digital image correlation (DIC) is an optical technique that provides the displacement, and therefore strain, over an entire region of interest on the bone surface. This study compares vertebral body strains measured using strain gages and DIC. The anterior surfaces of 15 cadaveric porcine vertebrae were prepared with a strain rosette and a speckled paint pattern for DIC. The vertebrae were loaded in compression with a materials testing machine, and two high-resolution cameras were used to image the anterior surface of the bones. The mean noise levels for the strain rosette and DIC were 1 με and 24 με, respectively. Bland–Altman analysis was used to compare strain from the DIC and rosette (excluding 44% of trials with some evidence of strain rosette failure or debonding); the mean difference ± 2 standard deviations (SDs) was −108 με ± 702 με for the minimum (compressive) principal strain and −53 με ± 332 με for the maximum (tensile) principal strain. Although the DIC has higher noise, it avoids the relatively high risk we observed of strain gage debonding. These results can be used to develop guidelines for selecting a method to measure strain on bone.

References

References
1.
Hongo
,
M.
,
Abe
,
E.
,
Shimada
,
Y.
,
Murai
,
H.
,
Ishikawa
,
N.
, and
Sato
,
K.
,
1999
, “
Surface Strain Distribution on Thoracic and Lumbar Vertebrae Under Axial Compression. The Role in Burst Fractures
,”
Spine
,
24
(
12
), pp.
1197
1202
.
2.
Cristofolini
,
L.
,
Brandolini
,
N.
,
Danesi
,
V.
,
Juszczyk
,
M. M.
,
Erani
,
P.
, and
Viceconti
,
M.
,
2013
, “
Strain Distribution in the Lumbar Vertebrae Under Different Loading Configurations
,”
Spine J.
,
13
(
10
), pp.
1281
1292
.
3.
Cristofolini
,
L.
,
Juszczyk
,
M.
,
Taddei
,
F.
, and
Viceconti
,
M.
,
2009
, “
Strain Distribution in the Proximal Human Femoral Metaphysis
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
3
), pp.
273
288
.
4.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Pesigan
,
M.
,
Reinartz
,
J.
,
Sances
,
A. J.
, and
Cusick
,
J. F.
,
1995
, “
Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
474
478
.
5.
Gilchrist
,
S.
,
Guy
,
P.
, and
Cripton
,
P. A.
,
2013
, “
Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121001
.
6.
Mahomed
,
N.
,
Harrington
,
I.
,
Kellam
,
J.
,
Maistrelli
,
G.
,
Hearn
,
T.
, and
Vroemen
,
J.
,
1994
, “
Biomechanical Analysis of the Gamma Nail and Sliding Hip Screw
,”
Clin. Orthop.
,
304
(1), pp.
280
288
.
7.
Decking
,
R.
,
Puhl
,
W.
,
Simon
,
U.
, and
Claes
,
L. E.
,
2006
, “
Changes in Strain Distribution of Loaded Proximal Femora Caused by Different Types of Cementless Femoral Stems
,”
Clin. Biomech.
,
21
(
5
), pp.
495
501
.
8.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
,
2006
, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site
,”
Spine
,
31
(
16
), pp.
1789
1794
.
9.
Schileo
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2007
, “
Subject-Specific Finite Element Models Can Accurately Predict Strain Levels in Long Bones
,”
J. Biomech.
,
40
(
13
), pp.
2982
2989
.
10.
Perry
,
C. C.
,
1984
, “
The Resistance Strain Gage Revisited
,”
Exp. Mech.
,
24
(
4
), pp.
286
299
.
11.
Kahn-Jetter
,
Z. L.
, and
Chu
,
T. C.
,
1990
, “
Three-Dimensional Displacement Measurements Using Digital Image Correlation and Photogrammic Analysis
,”
Exp. Mech.
,
30
(
1
), pp.
10
16
.
12.
Sztefek
,
P.
,
Vanleene
,
M.
,
Olsson
,
R.
,
Collinson
,
R.
,
Pitsillides
,
A. A.
, and
Shefelbine
,
S.
,
2010
, “
Using Digital Image Correlation to Determine Bone Surface Strains During Loading and After Adaptation of the Mouse Tibia
,”
J. Biomech.
,
43
(
4
), pp.
599
605
.
13.
Ghosh
,
R.
,
Gupta
,
S.
,
Dickinson
,
A.
, and
Browne
,
M.
,
2012
, “
Experimental Validation of Finite Element Models of Intact and Implanted Composite Hemipelvises Using Digital Image Correlation
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081003
.
14.
Spera
,
D.
,
Genovese
,
K.
, and
Voloshin
,
A.
,
2011
, “
Application of Stereo-Digital Image Correlation to Full-Field 3-D Deformation Measurement of Intervertebral Disc
,”
Strain
,
47
(s1), pp.
e572
e587
.
15.
Grassi
,
L.
,
Väänänen
,
S. P.
,
Amin Yavari
,
S.
,
Jurvelin
,
J. S.
,
Weinans
,
H.
,
Ristinmaa
,
M.
,
Zadpoor
,
A. A.
, and
Isaksson
,
H.
,
2014
, “
Full-Field Strain Measurement During Mechanical Testing of the Human Femur at Physiologically Relevant Strain Rates
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
111010
.
16.
Sutton
,
M. A.
,
2008
, “
Digital Image Correlation for Shape and Deformation Measurements
,”
Springer Handbook of Experimental Solid Mechanics
,
Springer
,
Boston, MA
, pp.
565
599
.
17.
Ellis
,
B. L.
, and
Smith
,
L. M.
,
2009
, “
Modeling and Experimental Testing of Strain Gauges in Operational and Failure Modes
,”
IEEE Trans. Instrum. Meas.
,
58
(
7
), pp.
2222
2227
.
18.
Hussein
,
A. I.
,
Barbone
,
P. E.
, and
Morgan
,
E. F.
,
2012
, “
Digital Volume Correlation for Study of the Mechanics of Whole Bones
,”
Procedia IUTAM
,
4
(1), pp.
116
125
.
19.
Wieneke
,
B.
, and
Prevost
,
R.
,
2014
, “
DIC Uncertainty Estimation From Statistical Analysis of Correlation Values
,”
Advancement of Optical Methods in Experimental Mechanics
, Vol.
3
,
H.
Jin
,
C.
Sciammarella
,
S.
Yoshida
, and
L.
Lamberti
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
125
136
.
You do not currently have access to this content.