Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, “Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters,” J. Biomech., 29(9), pp. 1223–1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, “Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters,” J. Biomech., 29(9), pp. 1223–1230) for dynamic modeling of body segments.

References

References
1.
Piovesan
,
D.
,
Pierobon
,
A.
,
Dizio
,
P.
, and
Lackner
,
J. R.
,
2011
, “
Comparative Analysis of Methods for Estimating Arm Segment Parameters and Joint Torques From Inverse Dynamics
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031003
.
2.
Dempster
,
W.
,
1955
, “
Space Requirements of the Seated Operator
,” Wright Air Development Center, Wright-Patterson AFB, Technical Report No. WADC-TR-55-159.
3.
Dempster
,
W. T.
, and
Gaughran
,
G. R.
,
1967
, “
Properties of Body Segments Based on Size and Weight
,”
Am. J. Anat.
,
120
(
1
), pp.
33
54
.
4.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
,
1969
, “
Weight, Volume, and Center of Mass of Segments of the Human Body
,” DTIC Document
Technical Report No. AMRL-TR-69-70
.
5.
Chandler
,
R.
,
Clauser
,
C. E.
,
McConville
,
J. T.
,
Reynolds
,
H.
, and
Young
,
J. W.
,
1975
, “
Investigation of Inertial Properties of the Human Body
,” DTIC Document
Technical Report No. AMRL-TR-74-137
.
6.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Zhang
,
J.
, and
Baisden
,
J. L.
,
2009
, “
Physical Properties of the Human Head: Mass, Center of Gravity and Moment of Inertia
,”
J. Biomech.
,
42
(
9
), pp.
1177
1192
.
7.
Hanavan
,
E. P.
,
1964
, “
A Mathematical Model of the Human Body
,” DTIC Document
Technical Report No. AMRL-TR-64-102
8.
Jensen
,
R. K.
,
1978
, “
Estimation of the Biomechanical Properties of Three Body Types Using a Photogrammetric Method
,”
J. Biomech.
,
11
(
8
), pp.
349
358
.
9.
McConville
,
J. T.
,
Clauser
,
C. E.
,
Churchill
,
T. D.
,
Cuzzi
,
J.
, and
Kaleps
,
I.
,
1980
, “
Anthropometric Relationships of Body and Body Segment Moments of Inertia
,”
Technical Report No. AFAMRL-TR-80-119
.
10.
Young
,
J. W.
,
Chandler
,
R. F.
,
Snow
,
C. C.
,
Robinette
,
K. M.
,
Zehner
,
G. F.
, and
Lofberg
,
M. S.
,
1983
, “
Anthropometric and Mass Distribution Characteristics of the Adult Female
,” DTIC Document
Technical Report No. FAA-AM-83-16.
11.
Dumas
,
R.
,
Cheze
,
L.
, and
Verriest
,
J.-P.
,
2007
, “
Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
3
), pp.
543
553
.
12.
Martin
,
P. E.
,
Mungiole
,
M.
,
Marzke
,
M. W.
, and
Longhill
,
J. M.
,
1989
, “
The Use of Magnetic Resonance Imaging for Measuring Segment Inertial Properties
,”
J. Biomech.
,
22
(
4
), pp.
367
376
.
13.
Zatsiorsky
,
V.
, and
Seluyanov
,
V.
,
1983
, “
The Mass and Inertia Characteristics of the Main Segments of the Human Body
,”
Biomechanics VIII-B
,
H.
Matsui
, and
K.
Kobayashi
, eds., Human Kinetic Publishers, Champaign, IL, pp.
1152
1159
.
14.
Huang
,
H.
, and
Wu
,
S.
,
1976
, “
The Evaluation of Mass Densities of the Human Body In Vivi From CT Scans
,”
Comput. Biol. Med.
,
6
(
4
), pp.
337
343
.
15.
Ackland
,
T. R.
,
Henson
,
P. W.
, and
Bailey
,
D. A.
,
2010
, “
The Uniform Density Assumption: Its Effect Upon the Estimation of Body Segment Inertial Parameters
,”
J. Appl. Biomech.
,
4
(
2
), pp.
146
155
.
16.
Milburn
,
P.
,
1991
, “
Real-Time 3-Dimensional Imaging Using Ultrasound
,”
XIIIth Congress of the International Society of Biomechanics
, pp.
1230
1231
.
17.
Durkin
,
J. L.
,
Dowling
,
J. J.
, and
Andrews
,
D. M.
,
2002
, “
The Measurement of Body Segment Inertial Parameters Using Dual Energy X-Ray Absorptiometry
,”
J. Biomech.
,
35
(
12
), pp.
1575
1580
.
18.
De Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky–Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
19.
Kodek
,
T.
,
2004
, “
An Identification Technique for Evaluating Static Body Segment Parameters in the Upper Extremity
,”
IEEE International Conference on Robotics and Automation
(
ICRA'04
), Apr. 26–May1, IEEE, Vol. 5, pp.
4747
4752
.
20.
Ma
,
Y.
,
Kwon
,
J.
,
Mao
,
Z.
,
Lee
,
K.
,
Li
,
L.
, and
Chung
,
H.
,
2011
, “
Segment Inertial Parameters of Korean Adults Estimated From Three-Dimensional Body Laser Scan Data
,”
Int. J. Ind. Ergon.
,
41
(
1
), pp.
19
29
.
21.
Yoganandan
,
N.
,
Maiman
,
D. J.
,
Guan
,
Y.
, and
Pintar
,
F.
,
2009
, “
Importance of Physical Properties of the Human Head on Head-Neck Injury Metrics
,”
Traffic Inj. Prev.
,
10
(
5
), pp.
488
496
.
22.
Vaughan
,
C.
,
Andrews
,
J.
, and
Hay
,
J.
,
1982
, “
Selection of Body Segment Parameters by Optimization Methods
,”
ASME J. Biomech. Eng.
,
104
(
1
), pp.
38
44
.
23.
Damavandi
,
M.
,
Farahpour
,
N.
, and
Allard
,
P.
,
2009
, “
Determination of Body Segment Masses and Centers of Mass Using a Force Plate Method in Individuals of Different Morphology
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1187
1194
.
24.
Damavandi
,
M.
,
Stylianides
,
G.
,
Farahpour
,
N.
, and
Allard
,
P.
,
2011
, “
Head and Trunk Segment Moments of Inertia Estimation Using Angular Momentum Technique: Validity and Sensitivity Analysis
,”
IEEE Trans. Biomed. Eng.
,
58
(
5
), pp.
1278
1285
.
25.
Ayusawa
,
K.
,
Nakamura
,
Y.
, and
Venture
,
G.
,
2009
, “
Optimal Estimation of Human Body Segments Dynamics Using Realtime Visual Feedback
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), IEEE, St. Louis, MO, Oct. 10–15, pp.
1627
1632
.
26.
Hansen
,
C.
,
Rezzoug
,
N.
,
Gorce
,
P.
,
Isableu
,
B.
, and
Venture
,
G.
,
2013
, “
Contact Force Computation Based on BSIPs
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
1
), pp.
72
74
.
27.
Hansen
,
C.
,
Venture
,
G.
,
Rezzoug
,
N.
,
Gorce
,
P.
, and
Isableu
,
B.
,
2014
, “
An Individual and Dynamic Body Segment Inertial Parameter Validation Method Using Ground Reaction Forces
,”
J. Biomech.
,
47
(
7
), pp.
1577
1581
.
28.
Ayusawa
,
K.
,
Venture
,
G.
, and
Nakamura
,
Y.
,
2014
, “
Identifiability and Identification of Inertial Parameters Using the Underactuated Base-Link Dynamics for Legged Multibody Systems
,”
Int. J. Rob. Res.
,
33
(
3
), pp.
446
468
.
29.
Mata
,
V.
,
Farhat
,
N.
,
Díaz-Rodríguez
,
M.
,
Valera
,
A.
, and
Page
,
A.
,
2008
,
Dynamic Parameters Identification for Parallel Manipulator
,
Tech Education and Publishing
,
Vienna, Austria
, pp.
21
44
.
30.
Szeto
,
G. P.
,
Straker
,
L.
, and
Raine
,
S.
,
2002
, “
A Field Comparison of Neck and Shoulder Postures in Symptomatic and Asymptomatic Office Workers
,”
Appl. Ergon.
,
33
(
1
), pp.
75
84
.
31.
Willinger
,
R.
,
Bourdet
,
N.
,
Fischer
,
R.
, and
Le Gall
,
F.
,
2005
, “
Modal Analysis of the Human Neck In Vivo as a Criterion for Crash Test Dummy Evaluation
,”
J. Sound Vib.
,
287
(
3
), pp.
405
431
.
32.
Straker
,
L.
,
Burgess-Limerick
,
R.
,
Pollock
,
C.
,
Murray
,
K.
,
Netto
,
K.
,
Coleman
,
J.
, and
Skoss
,
R.
,
2008
, “
The Impact of Computer Display Height and Desk Design on 3D Posture During Information Technology Work by Young Adults
,”
J. Electromyography Kinesiology
,
18
(
2
), pp.
336
349
.
33.
Page
,
Á.
,
De Rosario
,
H.
,
Gálvez
,
J. A.
, and
Mata
,
V.
,
2011
, “
Representation of Planar Motion of Complex Joints by Means of Rolling Pairs. Application to Neck Motion
,”
J. Biomech.
,
44
(
4
), pp.
747
750
.
34.
Baydal-Bertomeu
,
J. M.
,
Page
,
Á. F.
,
Belda-Lois
,
J. M.
,
Garrido-Jaén
,
D.
, and
Prat
,
J. M.
,
2011
, “
Neck Motion Patterns in Whiplash-Associated Disorders: Quantifying Variability and Spontaneity of Movement
,”
Clin. Biomech.
,
26
(
1
), pp.
29
34
.
35.
Page
,
A.
,
De Rosario
,
H.
,
Mata
,
V.
,
Hoyos
,
J.
, and
Porcar
,
R.
,
2006
, “
Effect of Marker Cluster Design on the Accuracy of Human Movement Analysis Using Stereophotogrammetry
,”
Med. Biol. Eng. Comput.
,
44
(
12
), pp.
1113
1119
.
36.
Page
,
Á.
,
de Rosario
,
H.
,
Mata
,
V.
, and
Atienza
,
C.
,
2009
, “
Experimental Analysis of Rigid Body Motion. A Vector Method to Determine Finite and Infinitesimal Displacements From Point Coordinates
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031005
.
37.
Page
,
A.
,
Candelas
,
P.
, and
Belmar
,
F.
,
2006
, “
On the Use of Local Fitting Techniques for the Analysis of Physical Dynamic Systems
,”
Eur. J. Phys.
,
27
(
2
), pp.
273
280
.
38.
Diaz-Rodriguez
,
M.
,
Valera
,
A.
,
Mata
,
V.
, and
Valles
,
M.
,
2013
, “
Model-Based Control of a 3-DOF Parallel Robot Based on Identified Relevant Parameters
,”
IEEE/ASME Trans. Mechatron.
,
18
(
6
), pp.
1737
1744
.
39.
Kollia
,
A.
,
Pillet
,
H.
,
Bascou
,
J.
,
Villa
,
C.
,
Sauret
,
C.
, and
Lavaste
,
F.
,
2012
, “
Validation of a Volumic Model to Obtain Personalized Body Segment Inertial Parameters for People Sitting in a Wheelchair
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
208
209
.
40.
Pataky
,
T. C.
,
Zatsiorsky
,
V. M.
, and
Challis
,
J. H.
,
2003
, “
A Simple Method to Determine Body Segment Masses In Vivo: Reliability, Accuracy and Sensitivity Analysis
,”
Clin. Biomech.
,
18
(
4
), pp.
364
368
.
You do not currently have access to this content.