The precise role of smooth muscle cell contractility in elastic arteries remains unclear, but accumulating evidence suggests that smooth muscle dysfunction plays an important role in the development of thoracic aortic aneurysms and dissections (TAADs). Given the increasing availability of mouse models of these conditions, there is a special opportunity to study roles of contractility ex vivo in intact vessels subjected to different mechanical loads. In parallel, of course, there is a similar need to study smooth muscle contractility in models that do not predispose to TAADs, particularly in cases where disease might be expected. Multiple mouse models having compromised glycoproteins that normally associate with elastin to form medial elastic fibers present with TAADs, yet those with fibulin-5 deficiency do not. In this paper, we show that deletion of the fibulin-5 gene results in a significantly diminished contractility of the thoracic aorta in response to potassium loading despite otherwise preserved characteristic active behaviors, including axial force generation and rates of contraction and relaxation. Interestingly, this diminished response manifests around an altered passive state that is defined primarily by a reduced in vivo axial stretch. Given this significant coupling between passive and active properties, a lack of significant changes in passive material stiffness may help to offset the diminished contractility and thereby protect the wall from detrimental mechanosensing and its sequelae.

References

References
1.
Yanagisawa
,
H.
,
Davis
,
E. C.
,
Starcher
,
B. C.
,
Ouchi
,
T.
,
Yanagisawa
,
M.
,
Richardson
,
J. A.
, and
Olson
,
E. N.
,
2002
, “
Fibulin-5 is an Elastin-Binding Protein Essential for Elastic Fiber Development In Vivo
,”
Nature
,
415
(
6868
), pp.
168
171
.
2.
Le
, V
. P.
,
Cheng
,
J. K.
,
Kim
,
J.
,
Staiculescu
,
M. C.
,
Ficker
,
S. W.
,
Sheth
,
S. C.
,
Bhayani
,
S. A.
,
Mecham
,
R. P.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J. E.
,
2015
, “
Mechanical Factors Direct Mouse Aortic Remodeling During Early Maturation
,”
J. R. Soc. Interface.
,
12
(
104
), p.
20141350
.
3.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
, “
Decreased Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031007
.
4.
Pereira
,
L.
,
Lee
,
S. Y.
,
Gayraud
,
B.
,
Andrikopoulos
,
K.
,
Shapiro
,
S. D.
,
Bunton
,
T.
,
Biery
,
N. J.
,
Dietz
,
H. C.
,
Sakai
,
L. Y.
, and
Ramirez
,
F.
,
1999
, “
Pathogenetic Sequence for Aneurysm Revealed in Mice Under Expressing Fibrillin-1
,”
Proc. Natl. Acad. Sci. USA
,
96
(
7
), pp.
3819
3823
.
5.
Huang
,
J.
,
Davis
,
E. C.
,
Chapman
,
S. L.
,
Budatha
,
M.
,
Marmorstein
,
L. Y.
,
Word
,
R. A.
, and
Yanagisawa
,
H.
,
2010
, “
Fibulin-4 Deficiency Results in Ascending Aortic Aneurysms: A Potential Link Between Abnormal Smooth Muscle Cell Phenotype and Aneurysm Progression
,”
Circ. Res.
,
106
(
3
), pp.
583
592
.
6.
Wang
,
X.
,
LeMaire
,
S. A.
,
Chen
,
L.
,
Carter
,
S. A.
,
Shen
,
Y. H.
,
Gan
,
Y.
,
Bartsch
,
H.
,
Wilks
,
J. A.
,
Utama
,
B.
,
Ou
,
H.
,
Thompson
,
R. W.
,
Coselli
,
J. S.
, and
Wang
,
X. L.
,
2005
, “
Decreased Expression of Fibulin-5 Correlates With Reduced Elastin in Thoracic Aortic Dissection
,”
Surgery
,
138
(
2
), pp.
352
359
.
7.
Humphrey
,
J. D.
,
Schwartz
,
M. A.
,
Tellides
,
G.
, and
Milewicz
,
D. M.
,
2015
, “
Role of Mechanotransduction in Vascular Biology: Focus on Thoracic Aortic Aneurysms and Dissections
,”
Circ. Res.
,
116
(
8
), pp.
1448
1461
.
8.
Kim
,
H. R.
,
Appel
,
S.
,
Betterkind
,
S.
,
Gangopadhyay
,
S. S.
, and
Morgan
,
K. G.
,
2008
, “
Smooth Muscle Signaling Pathways in Health and Disease
,”
J. Cell. Mol. Med.
,
12
(
6a
), pp.
2165
2180
.
9.
Putz
,
S.
,
Lubomirov
,
L. T.
, and
Pfitzer
,
G.
,
2009
, “
Regulation of Smooth Muscle Contraction by Small GTPases
,”
Physiology
,
24
(
6
), pp.
324
356
.
10.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.
11.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2004
, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
795
.
12.
Agianniotis
,
A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
,
2012
, “
Active Axial Stress in Mouse Aorta
,”
J. Biomech.
,
26
(
45
), pp.
1924
1927
.
13.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
14.
Wagner
,
H. P.
, and
Humphrey
,
J. D.
,
2011
, “
Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051009
.
15.
Van Loon
,
P.
,
Klip
,
W.
, and
Bradley
,
E. L.
,
1977
, “
Length-Force and Volume–Pressure Relationships of Arteries
,”
Biorheology
,
14
(
4
), pp.
181
201
.
16.
Dobrin
,
P. B.
,
Schwarcz
,
T. H.
, and
Mrkvicka
,
R.
,
1990
, “
Longitudinal Retractive Force in Pressurized Dog and Human Arteries
,”
J. Surg. Res.
,
48
(
2
), pp.
116
120
.
17.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.
18.
Dye
,
W. W.
,
Gleason
,
R. L.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2007
, “
Altered Biomechanical Properties of Carotid Arteries in Two Mouse Models of Muscular Dystrophy
,”
J. Appl. Physiol.
,
103
(
2
), pp.
664
672
.
19.
Humphrey
,
J. D.
, and
Na
,
S.
,
2002
, “
Elastodynamics and Arterial Wall Stress
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
509
523
.
20.
Zulliger
,
M. A.
,
Kwak
,
N. T.
,
Tsapikouni
,
T.
, and
Stergiopulos
,
N.
,
2002
, “
Effects of Longitudinal Stretch on VSM Tone and Distensibility of Muscular Conduit Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
6
), pp.
H2599
H2605
.
21.
Knapp
,
J.
,
Aleth
,
S.
,
Balzer
,
F.
,
Gergs
,
U.
,
Schmitz
,
W.
, and
Neumann
,
J.
,
2006
, “
Comparison of Contractile Responses in Isolated Mouse Aorta and Pulmonary Artery: Influence of Strain and Sex
,”
J. Cardiovasc. Pharmacol.
,
48
(
1
), pp.
820
826
.
22.
Cyron
,
C.
, and
Humphrey
,
J. D.
,
2015
, “
Preferred Fiber Orientations in Healthy Arteries and Veins Understood from Netting Analysis
,”
Math. Mech. Solids.
,
20
(
6
), pp.
680
696
.
23.
Humphrey
,
J. D.
, and
Wilson
,
E.
,
2003
, “
A Potential Role of Smooth Muscle Tone in Early Hypertension: A Theoretical Study
,”
J. Biomech.
,
36
(
11
), pp.
1595
1601
.
24.
Takamizawa
,
K.
,
Hayashi
,
K.
, and
Matsuda
,
T.
,
1992
, “
Isometric Biaxial Tension of Smooth Muscle in Isolated Cylindrical Segments of Rabbit Arteries
,”
Am. J. Physiol.
,
263
(
1
), pp.
H30
H34
.
25.
Humphrey
,
J. D.
,
2003
, “
Continuum Thermomechanics and the Treatment of Disease and Injury
,”
ASME Appl. Mech. Rev.
,
56
(
2
), pp.
231
260
.
26.
Murtada
,
S. -I.
,
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2010
, “
A Calcium-Driven Mechanochemical Model for Prediction of Force Generation in Smooth Muscle
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
749
762
.
27.
Murtada
,
S.-I.
,
Arner
,
A.
, and
Holzapfel
,
G. A.
,
2012
, “
Experiments and Mechanochemical Modeling of Smooth Muscle Contraction: Significance of Filament Overlap
,”
J. Theor. Biol.
,
297
, pp.
176
186
.
28.
Murtada
,
S. -I.
,
Lewin
,
S.
,
Arner
,
A.
, and
Humphrey
,
J. D.
, “
Adaptation of Active Tone in the Mouse Descending Thoracic Aorta Under Acute Changes in Loading
,”
Biomech. Model. Mechanobiol.
(in press).
29.
Milewicz
,
D. M.
,
Gou
,
D. C.
,
Fadulu
,
V. T.
,
Lafont
,
A. L.
,
Papke
,
C. L.
,
Inamoto
,
S.
,
Kwartler
,
C. S.
, and
Pannu
,
H.
,
2008
, “
Genetic Basis of Thoracic Aortic Aneurysms and Dissections: Focus on Smooth Muscle Cell Contractile Dysfunction
,”
Annu. Rev. Genomics. Hum. Genet.
,
9
(
1
), pp.
283
302
.
30.
Ferruzzi
,
J.
,
Murtada
,
S.-I.
,
Li
,
G.
,
Jiao
,
Y.
,
Uman
,
S.
,
Ting
,
M. Y.-L.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2016
, “
Pharmacologically Improved Contractility Protects Against Aortic Dissection in Mice With Disrupted TGFb Signaling Despite Compromised ECM Properties
,”
Arterioscl. Thromb. Vasc. Biol.
(in press).
You do not currently have access to this content.