This article presented an assessment of quantitative measures of workspace (WS) attributes under simulated proximal interphalangeal (PIP) joint arthrodesis of the index finger. Seven healthy subjects were tested with the PIP joint unconstrained (UC) and constrained to selected angles using a motion analysis system. A model of the constrained finger was developed in order to address the impact of the inclusion of prescribed joint arthrodesis angles on WS attributes. Model parameters were obtained from system identification experiments involving flexion–extension (FE) movements of the UC and constrained finger. The data of experimental FE movements of the constrained finger were used to generate the two-dimensional (2D) WS boundaries and to validate the model. A weighted criterion was formulated to define an optimal constraint angle among several system parameters. Results indicated that a PIP joint immobilization angle of 40–50 deg of flexion maximized the 2D WS. The analysis of the aspect ratio of the 2D WS indicated that the WS was more evenly distributed as the imposed PIP joint constraint angle increased. With the imposed PIP joint constraint angles of 30 deg, 40 deg, 50 deg, and 60 deg of flexion, the normalized maximum distance of fingertip reach was reduced by approximately 3%, 4%, 7%, and 9%, respectively.

References

1.
Kao
,
I.
, and
Cutkosky
,
M. R.
,
1992
, “
Quasistatic Manipulation With Compliance and Sliding
,”
Int. J. Rob. Res.
,
11
(
1
), pp.
20
40
.
2.
Kao
,
I.
,
Chen
,
S. F.
,
Li
,
Y. M.
, and
Wang
,
G.
,
2003
, “
SACST: Smart Anthropomorphic Contact Surface Technology
,”
IEEE Rob. Autom. Mag.
,
10
(
1
), pp.
47
53
.
3.
Kao
,
I.
, and
Yang
,
F. Q.
,
2004
, “
Stiffness and Contact Mechanics for Soft Fingers in Grasping and Manipulation
,”
IEEE Trans. Rob. Autom.
,
20
(
1
), pp.
132
135
.
4.
Sisto
,
S. A.
, and
Malanga
,
G.
,
2006
, “
Osteoarthritis and Therapeutic Exercise
,”
Am. J. Phys. Med. Rehabil.
,
85
(
11 Suppl
), pp.
S69
78
.
5.
Rizzo
,
M.
,
Moran
,
S. L.
, and
Shin
,
A. Y.
,
2009
, “
Long-Term Outcomes of Trapeziometacarpal Arthrodesis in the Management of Trapeziometacarpal Arthritis
,”
J. Hand Surg. Am.
,
34
(
1
), pp.
20
26
.
6.
Mantovani
,
G.
,
Fukushima
,
W. Y.
,
Cho
,
A. B.
,
Aita
,
M. A.
,
Lino
,
W.
, Jr.
, and
Faria
,
F. N.
,
2008
, “
Alternative to the Distal Interphalangeal Joint Arthrodesis: Lateral Approach and Plate Fixation
,”
J. Hand Surg. Am.
,
33
(
1
), pp.
31
34
.
7.
Brutus
,
J. P.
,
Palmer
,
A. K.
,
Mosher
,
J. F.
,
Harley
,
B. J.
, and
Loftus
,
J. B.
,
2006
, “
Use of a Headless Compressive Screw for Distal Interphalangeal Joint Arthrodesis in Digits: Clinical Outcome and Review of Complications
,”
J. Hand Surg. Am.
,
31
(
1
), pp.
85
89
.
8.
Leibovic
,
S. J.
,
2007
, “
Instructional Course Lecture. Arthrodesis of the Interphalangeal Joints With Headless Compression Screws
,”
J. Hand Surg. Am.
,
32
(
7
), pp.
1113
1119
.
9.
Leibovic
,
S. J.
,
Richmond
,
V. A.
, and
Strickland
,
L. W.
,
1994
, “
Arthrodesis of the Proximal Interphalangeal Joint of the Finger—Comparison of the Use of the Herbert Screw With Other Fixation Methods
,”
J. Hand Surg. Am.
,
19A
(
2
), pp.
181
188
.
10.
Uhl
,
R. L.
,
2007
, “
Proximal Interphalangeal Joint Arthrodesis Using the Tension Band Technique
,”
J. Hand Surg. Am.
,
32
(
6
), pp.
914
917
.
11.
Woodworth
,
J. A.
,
McCullough
,
M. B.
,
Grosland
,
N. M.
, and
Adams
,
B. D.
,
2006
, “
Impact of Simulated Proximal Interphalangeal Arthrodeses of all Fingers on Hand Function
,”
J. Hand Surg. Am.
,
31
(
6
), pp.
940
946
.
12.
Yao
,
J.
,
Park
,
M. J.
,
Davis
,
D.
, and
Chang
,
J.
,
2012
, “
Ideal Position for Thumb Interphalangeal Arthrodesis in the Era of Smartphones and Text Communication
,”
Orthopedics
,
35
(
11
), pp.
955
957
.
13.
Chiu
,
H. Y.
, and
Su
,
F. C.
,
1996
, “
The Motion Analysis System and the Maximal Area of Fingertip Motion. A Preliminary Report
,”
J. Hand Surg. Br.
,
21
(
5
), pp.
604
608
.
14.
Chiu
,
H. Y.
,
Su
,
F. C.
, and
Wang
,
S. T.
,
1998
, “
The Motion Analysis System and the Fingertip Motion Area. Normal Values in Young Adults
,”
J. Hand Surg. Br.
,
23
(
1
), pp.
53
56
.
15.
Chiu
,
H. Y.
,
Su
,
F. C.
,
Wang
,
S. T.
, and
Hsu
,
H. Y.
,
1998
, “
The Motion Analysis System and Goniometry of the Finger Joints
,”
J. Hand Surg. Br.
,
23
(
6
), pp.
788
971
.
16.
Chiu
,
H. Y.
,
Lin
,
S. C.
,
Su
,
F. C.
,
Wang
,
S. T.
, and
Hsu
,
H. Y.
,
2000
, “
The Use of the Motion Analysis System for Evaluation of Loss of Movement in the Finger
,”
J. Hand Surg. Br.
,
25
(
2
), pp.
195
199
.
17.
Domalain
,
M.
,
Evans
,
P. J.
,
Seitz
,
W. H.
, Jr.
, and
Li
,
Z. M.
,
2011
, “
Influence of Index Finger Proximal Interphalangeal Joint Arthrodesis on Precision Pinch Kinematics
,”
J. Hand Surg. Am.
,
36
(
12
), pp.
1944
1949
.
18.
Leitkam
,
S. T.
,
Bix
,
L.
,
de la Fuente
,
J.
, and
Reid Bush
,
T.
,
2015
, “
Mapping Kinematic Functional Abilities of the Hand to Three Dimensional Shapes for Inclusive Design
,”
J. Biomech.
,
48
(
11
), pp.
2903
2910
.
19.
Leitkam
,
S. T.
,
Bush
,
T. R.
, and
Bix
,
L.
,
2014
, “
Determining Functional Finger Capabilities of Healthy Adults: Comparing Experimental Data to a Biomechanical Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021022
.
20.
Leijnse
,
J. N.
,
Quesada
,
P. M.
, and
Spoor
,
C. W.
,
2010
, “
Kinematic Evaluation of the Finger's Interphalangeal Joints Coupling Mechanism—Variability, Flexion-Extension Differences, Triggers, Locking Swanneck Deformities, Anthropometric Correlations
,”
J. Biomech.
,
43
(
12
), pp.
2381
2393
.
21.
Hahn
,
P.
,
Krimmer
,
H.
,
Hradetzky
,
A.
, and
Lanz
,
U.
,
1995
, “
Quantitative Analysis of the Linkage Between the Interphalangeal Joints of the Index Finger. an In Vivo Study
,”
J. Hand Surg. Br.
,
20
(
5
), pp.
696
699
.
22.
Mentzel
,
M.
,
Benlic
,
A.
,
Wachter
,
N. J.
,
Gulkin
,
D.
,
Bauknecht
,
S.
, and
Gulke
,
J.
,
2011
, “
The Dynamics of Motion Sequences of the Finger Joints During Fist Closure
,”
Handchir Mikrochir Plast Chir
,
43
(
3
), pp.
147
154
.
23.
Sancho-Bru
,
J. L.
,
Perez-Gonzalez
,
A.
,
Vergara-Monedero
,
M.
, and
Giurintano
,
D.
,
2001
, “
A 3-d Dynamic Model of Human Finger for Studying Free Movements
,”
J. Biomech.
,
34
(
11
), pp.
1491
1500
.
24.
Yokogawa
,
R.
, and
Hara
,
K.
,
2004
, “
Manipulabilities of the Index Finger and Thumb in Three Tip-Pinch Postures
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
212
219
.
25.
Miller
,
A.
,
Allen
,
P.
,
Santos
,
V.
, and
Valero-Cuevas
,
F.
,
2005
, “
From Robotic Hands to Human Hands: A Visualization and Simulation Engine for Grasping Research
,”
Ind. Rob. Int. J.
,
32
(
1
), pp.
55
63
.
26.
Leijnse
,
J. N.
,
Spoor
,
C. W.
, and
Shatford
,
R.
,
2005
, “
The Minimum Number of Muscles to Control a Chain of Joints With and Without Tenodeses, Arthrodeses, or Braces—Application to the Human Finger
,”
J. Biomech.
,
38
(
10
), pp.
2028
2036
.
27.
Metcalf
,
C. D.
,
Notley
,
S. V.
,
Chappell
,
P. H.
,
Burridge
,
J. H.
, and
Yule
,
V. T.
,
2008
, “
Validation and Application of a Computational Model for Wrist and Hand Movements Using Surface Markers
,”
IEEE Trans. Biomed. Eng.
,
55
(
3
), pp.
1199
1210
.
28.
Gamage
,
S. S.
, and
Lasenby
,
J.
,
2002
, “
New Least Squares Solutions for Estimating the Average Centre of Rotation and the Axis of Rotation
,”
J. Biomech.
,
35
(
1
), pp.
87
93
.
29.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Prentice Hall
,
Harlow, UK
.
You do not currently have access to this content.