Adjacent-level disease is a common iatrogenic complication seen among patients undergoing spinal fusion for low back pain. This is attributed to the postsurgical differences in stiffness between the spinal levels, which result in abnormal forces, stress shielding, and hypermobility at the adjacent levels. In addition, as most patients undergoing these surgeries are osteoporotic, screw loosening at the index level is a complication that commonly accompanies adjacent-level disease. Recent studies indicate that a rod with lower rigidity than that of titanium may help to overcome these detrimental effects at the adjacent level. The present study was conducted in vitro using 12 L1-S1 specimens divided into groups of six, with each group instrumented with either titanium rods or PEEK (polyetheretherketone) rods. The test protocol included subjecting intact specimens to pure moments of 10 Nm in extension and flexion using an FS20 Biomechanical Spine Test System (Applied Test Systems) followed by hybrid moments on the instrumented specimens to achieve the same L1-S1 motion as that of the intact specimens. During the protocol's later phase, the L4-L5 units from each specimen were segmented for cyclic loading followed by postfatigue kinematic analysis to highlight the differences in motion pre- and postfatigue. The objectives included the in vitro comparison of (1) the adjacent-level motion before and after instrumentation with PEEK and titanium rods and (2) the pre- and postfatigue motion at the instrumented level with PEEK and titanium rods. The results showed that the adjacent levels above the instrumentation caused increased flexion and extension with both PEEK and titanium rods. The postfatigue kinematic data showed that the motion at the instrumented level (L4-L5) increased significantly in both flexion and extension compared to prefatigue motion in titanium groups. However, there was no significant difference in motion between the pre- and postfatigue data in the PEEK group.

References

References
1.
Modic
,
M. T.
, and
Ross
,
J. S.
,
2007
, “
Lumbar Degenerative Disk Disease
,”
Radiology
,
245
(
1
), pp.
43
61
.
2.
Crow
,
W. T.
, and
Wills
,
D. R.
,
2009
, “
Estimating Cost of Care for Patients With Acute Low Back Pain: A Retrospective Review of Patient Records
,”
J. Am. Osteopath. Assoc.
,
109
, pp.
229
233
.
3.
Schizas
,
C.
,
Kulik
,
G.
, and
Kosmopoulos
,
V.
,
2010
, “
Disc Degeneration: Current Surgical Options
,”
Eur. Cell. Mater.
,
20
, pp.
306
315
.
4.
Kuslich
,
S. D.
,
Ulstrom
,
C. L.
, and
Michael
,
C. J.
,
1991
, “
The Tissue Origin of Low Back Pain and Sciatica: A Report of Pain Response to Tissue Stimulation During Operations on the Lumbar Spine Using Local Anesthesia
,”
Orthop. Clin. N. Am.
,
22
(2), pp.
181
187
.
5.
Yuan
,
H. A.
,
Garfin
,
S. R.
,
Dickman
,
C. A.
, and
Mardjetko
,
S. M.
,
1994
, “
A Historical Cohort Study of Pedicle Screw Fixation in Thoracic, Lumbar, and Sacral Spinal Fusions
,”
Spine
,
19
(20 Suppl), pp.
2279S
2296S
.
6.
Weinstein
,
J. N.
,
Rydevik
,
B. L.
, and
Rauschning
,
W.
,
1992
, “
Anatomic and Technical Considerations of Pedicle Screw Fixation
,”
Clin. Orthop. Relat. Res.
,
284
, pp.
34
46
.
7.
Lee
,
C. S.
,
Hwang
,
C. J.
,
Lee
,
S.-W.
,
Ahn
,
Y.-J.
,
Kim
,
Y.-T.
,
Lee
,
D.-H.
, and
Lee
,
M. Y.
,
2009
, “
Risk Factors for Adjacent Segment Disease After Lumbar Fusion
,”
Eur. Spine J.
,
18
(
11
), pp.
1637
1643
.
8.
Lund
,
T. O.
, and
Oxland
,
T. R.
,
2011
, “
Adjacent Level Disk Disease—Is it Really a Fusion Disease?
,”
Orthop. Clin. N. Am.
,
42
(
4
), pp.
529
541
.
9.
Park
,
P.
,
Garton
,
H. J.
,
Gala
,
V. C.
,
Hoff
,
J. T.
, and
McGillicuddy
,
J. E.
,
2004
, “
Adjacent Segment Disease After Lumbar or Lumbosacral Fusion: Review of the Literature
,”
Spine
,
29
(
17
), pp.
1938
1944
.
10.
Cavagna
,
R.
,
Tournier
,
C.
,
Aunoble
,
S.
,
Bouler
,
J. M.
,
Antonietti
,
P.
,
Ronai
,
M.
, and
Le Huec
,
J. C.
,
2008
, “
Lumbar Decompression and Fusion in Elderly Osteoporotic Patients: A Prospective Study Using Less Rigid Titanium Rod Fixation
,”
J. Spinal Disord. Technol.
,
21
(
2
), pp.
86
91
.
11.
Chou
,
W. Y.
,
Hsu
,
C. J.
,
Chang
,
W. N.
, and
Wong
,
C. Y.
,
2002
, “
Adjacent Segment Degeneration After Lumbar Spinal Posterolateral Fusion With Instrumentation in Elderly Patients
,”
Arch. Orthop. Trauma Surg.
,
122
(
1
), pp.
39
43
.
12.
Kanis
,
J. A.
,
Melton
,
L. J.
,
Christiansen
,
C.
,
Johnston
,
C. C.
, and
Khaltaev
,
N.
,
1994
, “
The Diagnosis of Osteoporosis
,”
J. Bone Miner. Res.
,
9
(8), pp.
1137
1141
.
13.
Ponnappan
,
R. K.
,
Serhan
,
H.
,
Zarda
,
B.
,
Patel
,
R.
,
Albert
,
T.
, and
Vaccaro
,
A. R.
,
2009
, “
Biomechanical Evaluation and Comparison of Polyetheretherketone Rod System to Traditional Titanium Rod Fixation
,”
Spine J.
,
9
(
3
), pp.
263
267
.
14.
Gornet
,
M. F.
,
Chan
,
F. W.
,
Coleman
,
J. C.
,
Murrell
,
B.
,
Nockels
,
R. P.
,
Taylor
,
B. A.
,
Lanman
,
T. H.
, and
Ochoa
,
J. A.
,
2011
, “
Biomechanical Assessment of a PEEK Rod System for Semi-Rigid Fixation of Lumbar Fusion Constructs
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081009
.
15.
Yoshihara
,
H.
,
2013
, “
Rods in Spinal Surgery: A Review of the Literature
,”
Spine J.
,
13
(
10
), pp.
1350
1358
.
16.
Qi
,
L.
,
Li
,
M.
,
Zhang
,
S.
,
Xue
,
J.
, and
Si
,
H.
,
2013
, “
Comparative Effectiveness of PEEK Rods Versus Titanium Alloy Rods in Lumbar Fusion: A Preliminary Report
,”
Acta Neurochir.
,
155
(
7
), pp.
1187
1193
.
17.
Galbusera
,
F.
,
Bellini
,
C. M.
,
Anasetti
,
F.
,
Ciavarro
,
C.
,
Lovi
,
A.
, and
Brayda-Bruno
,
M.
,
2011
, “
Rigid and Flexible Spinal Stabilization Devices: A Biomechanical Comparison
,”
Med. Eng. Physics
,
33
(
4
), pp.
490
496
.
18.
Agarwal
,
A.
,
Zakeri
,
A.
,
Agarwal
,
A. K.
,
Jayaswal
,
A.
, and
Goel
,
V.
,
2015
, “
Distraction Magnitude and Frequency Affects the Outcome in Juvenile Idiopathic Patients With Growth Rods: Finite Element Study Using a Representative Scoliotic Spine Model
,”
Spine J.
,
15
(
8
), pp.
1848
1855
.
19.
Abul-Kasim
,
K.
, and
Ohlin
,
A.
,
2014
, “
Evaluation of Implant Loosening Following Segmental Pedicle Screw Fixation in Adolescent Idiopathic Scoliosis: A 2 Year Follow-Up With Low-Dose CT
,”
Scoliosis
,
9
, p.
13
.
20.
Panjabi
,
M. M.
,
2007
, “
Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects
,”
Clin. Biomech.
,
22
(
3
), pp.
257
265
.
21.
Wittenberg
,
R. H.
,
Shea
,
M.
,
Edwards
,
W. T.
,
Swartz
,
D. E.
,
White
,
A. A.
, 3rd
, and
Hayes
,
W. C.
,
1992
, “
A Biomechanical Study of the Fatigue Characteristics of Thoracolumbar Fixation Implants in a Calf Spine Model
,”
Spine
,
17
(
6 Suppl.
), pp.
S121
S128
.
22.
Goel
,
V. K.
,
Ebraheim
,
N. A.
,
Biyani
,
A.
,
Rengachary
,
S.
, and
Faizan
,
A.
,
2005
, “
Role of Mechanical Factors in the Evaluation of Pedicle Screw Type Spinal Fixation Devices
,”
Neurol. India
,
53
(
4
), pp.
399
407
.
23.
Bastian
,
L.
,
Lange
,
U.
,
Knop
,
C.
,
Tusch
,
G.
, and
Blauth
,
M.
,
2001
, “
Evaluation of the Mobility of Adjacent Segments After Posterior Thoracolumbar Fixation: A Biomechanical Study
,”
Eur. Spine J.
,
10
(
4
), pp.
295
300
.
24.
Gillet
,
P.
,
2003
, “
The Fate of the Adjacent Motion Segments After Lumbar Fusion
,”
J. Spinal Disord. Technol.
,
16
(
4
), pp.
338
345
.
25.
Lee
,
C. K.
, and
Langrana
,
N. A.
,
1984
, “
Lumbosacral Spinal Fusion. A Biomechanical Study
,”
Spine
,
9
(
6
), pp.
574
581
.
26.
Aiki
,
H.
,
Ohwada
,
O.
,
Kobayashi
,
H.
,
Hayakawa
,
M.
,
Kawaguchi
,
S.
,
Takebayashi
,
T.
, and
Yamashita
,
T.
,
2005
, “
Adjacent Segment Stenosis After Lumbar Fusion Requiring Second Operation
,”
J. Orthopa. Sci.
,
10
(
5
), pp.
490
495
.
27.
Levin
,
D. A.
,
Hale
,
J. J.
, and
Bendo
,
J. A.
,
2007
, “
Adjacent Segment Degeneration Following Spinal Fusion for Degenerative Disc Disease
,”
Bull. NYU Hosp. Jt. Dis.
,
65
(1), pp.
29
36
.
28.
Chen
,
W. J.
,
Lai
,
P. L.
, and
Chen
,
L. H.
,
2003
, “
Adjacent Instability After Instrumented Lumbar Fusion
,”
Chang Gung Med. J.
,
26
(11), pp.
792
798
.
29.
Shono
,
Y.
,
Kaneda
,
K.
,
Abumi
,
K.
,
McAfee
,
P. C.
, and
Cunningham
,
B. W.
,
1998
, “
Stability of Posterior Spinal Instrumentation and Its Effects on Adjacent Motion Segments in the Lumbosacral Spine
,”
Spine
,
23
(
14
), pp.
1550
1558
.
30.
Athanasakopoulos
,
M.
,
Mavrogenis
,
A. F.
,
Triantafyllopoulos
,
G.
,
Koufos
,
S.
, and
Pneumaticos
,
S. G.
,
2013
, “
Posterior Spinal Fusion Using Pedicle Screws
,”
Orthopedics
,
36
(7), pp.
e951
e957
.
You do not currently have access to this content.