In this paper, an attempt has been made to study sedimentation of a red blood cell (RBC) in a plasma-filled tube numerically. Such behaviors are studied for a healthy and a defective cell which might be created due to human diseases, such as diabetes, sickle-cell anemia, and hereditary spherocytosis. Flow-induced deformation of RBC is obtained using finite-element method (FEM), while flow and fluid–membrane interaction are handled using lattice Boltzmann (LB) and immersed boundary methods (IBMs), respectively. The effects of RBC properties as well as its geometry and orientation on its sedimentation rate are investigated and discussed. The results show that decreasing frontal area of an RBC and/or increasing tube diameter results in a faster settling. Comparison of healthy and diabetic cells reveals that less cell deformability leads to slower settling. The simulation results show that the sicklelike and spherelike RBCs have lower settling velocity as compared with a biconcave discoid cell.

References

References
1.
Jou
,
J. M.
,
2012
, “
Erythrocyte Sedimentation Rate (ESR)
,”
Laboratory Hematology Practice
,
Wiley-Blackwell
, Oxford, UK, pp.
638
646
.
2.
Banerjee
,
R.
,
Nageshwari
,
K.
, and
Puniyani
,
R.
,
1998
, “
The Diagnostic Relevance of Red Cell Rigidity
,”
Clin. Hemorheol. Microcirc.
,
19
(
1
), pp.
21
24
.
3.
Koscielny
,
J.
,
Latza
,
R.
,
Wolf
,
S.
,
Kiesewetter
,
H.
, and
Jung
,
F.
,
1998
, “
Early Rheological and Microcirculatory Changes in Children With Type I Diabetes Mellitus
,”
Clin. Hemorheol. Microcirc.
,
19
(
2
), pp.
139
150
.
4.
Beder
,
I.
,
Maëae
,
J.
,
Ársky
,
J.
,
Országhová
,
Z.
, and
Babinská
,
K.
,
2002
, “
Effect of Selected Substances With Antiglycative and Antioxidative Properties on Erythrocyte Deformability in Diabetic Patients
,”
Scr. Med. (BRNO)
,
75
(5), pp.
239
244
.
5.
Brown
,
C. D.
,
Ghali
,
H. S.
,
Zhao
,
Z.
,
Thomas
,
L. L.
, and
Friedman
,
E. A.
,
2005
, “
Association of Reduced Red Blood Cell Deformability and Diabetic Nephropathy
,”
Kidney Int.
,
67
(
1
), pp.
295
300
.
6.
Peterson
,
J. M.
,
2008
,
Sickle Cell Anemia
,
Rosen Publishing Group
, New York.
7.
Liu
,
S. C.
,
Derick
,
L. H.
,
Agre
,
P.
, and
Palek
,
J.
,
1990
, “
Alteration of the Erythrocyte Membrane Skeletal Ultrastructure in Hereditary Spherocytosis, Hereditary Elliptocytosis, and Pyropoikilocytosis
,”
Blood
,
76
(
1
), pp.
198
205
.
8.
Kim
,
S.
,
1985
, “
Sedimentation of Two Arbitrarily Oriented Spheroids in a Viscous Fluid
,”
Int. J. Multiphase Flow
,
11
(
5
), pp.
699
712
.
9.
Lueptow
,
R. M.
, and
Huübler
,
W.
,
1991
, “
Sedimentation of a Suspension in a Centrifugal Field
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
485
491
.
10.
Tabatabaian
,
M.
, and
Cox
,
R. G.
,
1991
, “
Effect of Contact Forces on Sedimenting Spheres in Stokes Flow
,”
Int. J. Multiphase Flow
,
17
(
3
), pp.
395
413
.
11.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
,
1994
, “
Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid—Part 1: Sedimentation
,”
J. Fluid Mech.
,
261
(
95
), pp.
95
–134.
12.
Ilic
,
V.
, and
Vincent
,
J.
,
1994
, “
Sedimentation of Complex-Shaped Particles in a Square Tank at Low Reynolds Numbers
,”
Int. J. Multiphase Flow
,
20
(
2
), pp.
445
452
.
13.
Secomb
,
T. W.
, and
El-Kareh
,
A. W.
,
1994
, “
A Model for Motion and Sedimentation of Cylindrical Red-Cell Aggregates During Slow Blood Flow in Narrow Horizontal Tubes
,”
ASME J. Biomech. Eng.
,
116
(
3
), pp.
243
249
.
14.
Ten Cate
,
A.
,
Nieuwstad
,
C.
,
Derksen
,
J.
, and
Van den Akker
,
H.
,
2002
, “
Particle Imaging Velocimetry Experiments and Lattice-Boltzmann Simulations on a Single Sphere Settling Under Gravity
,”
Phys. Fluids
,
14
(
11
), pp.
4012
4025
.
15.
Xu
,
Z.-J.
, and
Michaelides
,
E. E.
,
2003
, “
The Effect of Particle Interactions on the Sedimentation Process of Non-Cohesive Particles
,”
Int. J. Multiphase Flow
,
29
(
6
), pp.
959
982
.
16.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2004
, “
The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid–Particles Interaction Problems
,”
J. Comput. Phys.
,
195
(
2
), pp.
602
628
.
17.
Yu
,
Z.
,
Wachs
,
A.
, and
Peysson
,
Y.
,
2006
, “
Numerical Simulation of Particle Sedimentation in Shear-Thinning Fluids With a Fictitious Domain Method
,”
J. Non-Newtonian Fluid Mech.
,
136
(
2–3
), pp.
126
139
.
18.
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2013
, “
Computational Analysis of Non-Spherical Particle Transport and Deposition in Shear Flow With Application to Lung Aerosol Dynamics—A Review
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021008
.
19.
Hall
,
C. L.
, and
Calt
,
M.
,
2014
, “
Computational Modeling of Thrombotic Microparticle Deposition in Nonparallel Flow Regimes
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
111002
.
20.
Hashemi
,
Z.
,
Abouali
,
O.
, and
Kamali
,
R.
,
2014
, “
Three Dimensional Thermal Lattice Boltzmann Simulation of Heating/Cooling Spheres Falling in a Newtonian Liquid
,”
Int. J. Therm. Sci.
,
82
, pp.
23
33
.
21.
Hashemi
,
Z.
,
Jafari
,
S.
, and
Rahnama
,
M.
,
2014
, “
Comparative Study of Momentum-Exchange and Smoothed Profile Methods in Lattice Boltzmann Method
,”
Comput. Fluids
,
100
, pp.
65
71
.
22.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
,
Bubbles, Drops, and Particles
,
Courier Corporation
, Mineola, NY.
23.
Chhabra
,
R. P.
,
1993
,
Bubbles, Drops, and Particles in Non-Newtonian Fluids
, Vol.
2
,
CRC Press
,
Boca Raton, FL
.
24.
McKinley
,
G.
,
2002
,
Transport Processes in Bubbles, Drops and Particles
,
Taylor & Francis
,
New York
.
25.
Shardt
,
O.
, and
Derksen
,
J. J.
,
2012
, “
Direct Simulations of Dense Suspensions of Non-Spherical Particles
,”
Int. J. Multiphase Flow
,
47
, pp.
25
36
.
26.
Gompper
,
G.
,
Ihle
,
T.
,
Kroll
,
D. M.
, and
Winkler
,
R. G.
,
2009
, “
Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
,”
Adv. Polym. Sci.
,
221
, pp.
1
87
.
27.
Noguchi
,
H.
, and
Gompper
,
G.
,
2005
, “
Dynamics of Fluid Vesicles in Shear Flow: Effect of Membrane Viscosity and Thermal Fluctuations
,”
Phys. Rev. E
,
72
(
1
), p.
011901
.
28.
Noguchi
,
H.
, and
Gompper
,
G.
,
2005
, “
Shape Transitions of Fluid Vesicles and Red Blood Cells in Capillary Flows
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
40
), pp.
14159
14164
.
29.
Finken
,
R.
,
Lamura
,
A.
,
Seifert
,
U.
, and
Gompper
,
G.
,
2008
, “
Two-Dimensional Fluctuating Vesicles in Linear Shear Flow
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
,
25
(
3
), pp.
309
321
.
30.
McWhirter
,
J. L.
,
Noguchi
,
H.
, and
Gompper
,
G.
,
2009
, “
Flow-Induced Clustering and Alignment of Vesicles and Red Blood Cells in Microcapillaries
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
15
), pp.
6039
6043
.
31.
Noguchi
,
H.
,
Gompper
,
G.
,
Schmid
,
L.
,
Wixforth
,
A.
, and
Franke
,
T.
,
2010
, “
Dynamics of Fluid Vesicles in Flow Through Structured Microchannels
,”
Europhys. Lett.
,
89
(
2
), p.
28002
.
32.
McWhirter
,
J. L.
,
Noguchi
,
H.
, and
Gompper
,
G.
,
2011
, “
Deformation and Clustering of Red Blood Cells in Microcapillary Flows
,”
Soft Matter
,
7
(
22
), pp.
10967
10977
.
33.
McWhirter
,
J. L.
,
Noguchi
,
H.
, and
Gompper
,
G.
,
2012
, “
Ordering and Arrangement of Deformed Red Blood Cells in Flow Through Microcapillaries
,”
New J. Phys.
,
14
(
8
), p.
085026
.
34.
Peltomäki
,
M.
, and
Gompper
,
G.
,
2013
, “
Sedimentation of Single Red Blood Cells
,”
Soft Matter
,
9
(
34
), pp.
8346
8358
.
35.
Sui
,
Y.
,
Chew
,
Y. T.
,
Roy
,
P.
, and
Low
,
H. T.
,
2008
, “
A Hybrid Method to Study Flow-Induced Deformation of Three-Dimensional Capsules
,”
J. Comput. Phys.
,
227
(
12
), pp.
6351
6371
.
36.
Wu
,
J.
, and
Aidun
,
C. K.
,
2010
, “
Simulating 3D Deformable Particle Suspensions Using Lattice Boltzmann Method With Discrete External Boundary Force
,”
Int. J. Numer. Methods Fluids
,
62
(
7
), pp.
765
783
.
37.
Charrier
,
J.
,
Shrivastava
,
S.
, and
Wu
,
R.
,
1989
, “
Free and Constrained Inflation of Elastic Membranes in Relation to Thermoforming—Non-Axisymmetric Problems
,”
J. Strain Anal. Eng. Des.
,
24
(
2
), pp.
55
74
.
38.
Shrivastava
,
S.
, and
Tang
,
J.
,
1993
, “
Large Deformation Finite Element Analysis of Non-Linear Viscoelastic Membranes With Reference to Thermoforming
,”
J. Strain Anal. Eng. Des.
,
28
(
1
), pp.
31
51
.
39.
Sui
,
Y.
,
Low
,
H.
,
Chew
,
Y.
, and
Roy
,
P.
,
2008
, “
Tank-Treading, Swinging, and Tumbling of Liquid-Filled Elastic Capsules in Shear Flow
,”
Phys. Rev. E
,
77
(
1
), p.
016310
.
40.
Sui
,
Y.
,
Chen
,
X.
,
Chew
,
Y.
,
Roy
,
P.
, and
Low
,
H.
,
2010
, “
Numerical Simulation of Capsule Deformation in Simple Shear Flow
,”
Comput. Fluids
,
39
(
2
), pp.
242
250
.
41.
Sui
,
Y.
,
Low
,
H.
,
Chew
,
Y.
, and
Roy
,
P.
,
2010
, “
A Front-Tracking Lattice Boltzmann Method to Study Flow-Induced Deformation of Three-Dimensional Capsules
,”
Comput. Fluids
,
39
(
3
), pp.
499
511
.
42.
Krüger
,
T.
,
Varnik
,
F.
, and
Raabe
,
D.
,
2011
, “
Efficient and Accurate Simulations of Deformable Particles Immersed in a Fluid Using a Combined Immersed Boundary Lattice Boltzmann Finite Element Method
,”
Comput. Math. Appl.
,
61
(
12
), pp.
3485
3505
.
43.
Krüger
,
T.
,
Gross
,
M.
,
Raabe
,
D.
, and
Varnik
,
F.
,
2013
, “
Crossover From Tumbling to Tank-Treading-Like Motion in Dense Simulated Suspensions of Red Blood Cells
,”
Soft Matter
,
9
(
37
), pp.
9008
9015
.
44.
Hashemi
,
Z.
,
Jafari
,
S.
, and
Rahnama
,
M.
,
2015
, “
Lattice Boltzmann Simulation of Three-Dimensional Capsule Deformation in a Shear Flow With Different Membrane Constitutive Laws
,”
Sci. Iran.
,
22
(
5
), pp.
1877
1890
.
45.
Elad
,
D.
, and
Einav
,
S.
,
2003
, “
Physical and Flow Properties of Blood
,”
Standard Handbook of Biomedical Engineering and Design
,
McGraw-Hill
, New York.
46.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases—I: Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
–524.
47.
Luo
,
L.-S.
,
1993
, “
Lattice-Gas Automata and Lattice Boltzmann Equations for Two-Dimensional Hydrodynamics
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
48.
Evans
,
E.
, and
Fung
,
Y.-C.
,
1972
, “
Improved Measurements of the Erythrocyte Geometry
,”
Microvasc. Res.
,
4
(
4
), pp.
335
347
.
49.
Doddi
,
S. K.
, and
Bagchi
,
P.
,
2009
, “
Three-Dimensional Computational Modeling of Multiple Deformable Cells Flowing in Microvessels
,”
Phys. Rev. E
,
79
(
4
), p.
046318
.
50.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R.
, and
Chien
,
S.
,
1973
, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
,
13
(
3
), pp.
245
–264.
51.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.
52.
Ramanujan
,
S.
, and
Pozrikidis
,
C.
,
1998
, “
Deformation of Liquid Capsules Enclosed by Elastic Membranes in Simple Shear Flow: Large Deformations and the Effect of Fluid Viscosities
,”
J. Fluid Mech.
,
361
, pp.
117
143
.
53.
Waugh
,
R.
, and
Evans
,
E.
,
1979
, “
Thermoelasticity of Red Blood Cell Membrane
,”
Biophys. J.
,
26
(
1
), pp.
115
–131.
You do not currently have access to this content.