This paper reviews and further develops pore-scale computational flow modeling techniques used for creeping flow through orthotropic fiber bundles used in blood oxygenators. Porous model significantly reduces geometrical complexity by taking a homogenization approach to model the fiber bundles. This significantly simplifies meshing and can avoid large time-consuming simulations. Analytical relationships between permeability and porosity exist for Newtonian flow through regular arrangements of fibers and are commonly used in macroscale porous models by introducing a Darcy viscous term in the flow momentum equations. To this extent, verification of analytical Newtonian permeability–porosity relationships has been conducted for parallel and transverse flow through square and staggered arrangements of fibers. Similar procedures are then used to determine the permeability–porosity relationship for non-Newtonian blood. The results demonstrate that modeling non-Newtonian shear-thinning fluids in porous media can be performed via a generalized Darcy equation with a porous medium viscosity decomposed into a constant term and a directional expression through least squares fitting. This concept is then investigated for various non-Newtonian blood viscosity models. The proposed methodology is conducted with two different porous model approaches, homogeneous and heterogeneous, and validated against a high-fidelity model. The results of the heterogeneous porous model approach yield improved pressure and velocity distribution which highlights the importance of wall effects.

References

References
1.
Turner
,
D. A.
, and
Cheifetz
,
I. M.
,
2013
, “
Extracorporeal Membrane Oxygenation for Adult Respiratory Failure
,”
Respir. Care
,
58
(
6
), pp.
1038
1052
.
2.
Schmidt
,
M.
,
Hodgson
,
C.
, and
Combes
,
A.
,
2015
, “
Extracorporeal Gas Exchange for Acute Respiratory Failure in Adult Patients: A Systematic Review
,”
Crit. Care
,
19
(
1
), pp.
1
14
.
3.
Brogan
,
T. V.
,
Zabrocki
,
L.
,
Thiagarajan
,
R. R.
,
Rycus
,
R. H.
, and
Bratton
,
S. L.
,
2012
, “
Prolonged Extracorporeal Membrane Oxygenation for Children With Respiratory Failure
,”
Pediatr. Crit. Care Med.
,
13
(
4
), pp.
e249
e254
.
4.
Gibbon
,
J. H.
, Jr.
,
1937
, “
Artificial Maintenance of Circulation During Experimental Occlusion of Pulmonary Artery
,”
Arch. Surg.
,
34
(
6
), pp.
1105
1131
.
5.
Gartner
,
M. J.
,
Wilhelm
,
C. R.
,
Gage
,
K. L.
,
Fabrizio
,
M. C.
, and
Wagner
,
W. R.
,
2000
, “
Modeling Flow Effects on Thrombotic Deposition in a Membrane Oxygenator
,”
Artif. Organs
,
24
(
1
), pp.
29
36
.
6.
Gage
,
K. L.
,
Gartner
,
M. J.
,
Burgreen
,
G. W.
, and
Wagner
,
W. R.
,
2002
, “
Predicting Membrane Oxygenator Pressure Drop Using Computational Fluid Dynamics
,”
Artif. Organs
,
26
(
7
), pp.
600
607
.
7.
Mazaheri
,
A. R.
, and
Ahmadi
,
G.
, 2006, “
Uniformity of the Fluid Flow Velocities Within Hollow Fiber Membranes of Blood Oxygenation Devices
,”
Artif. Organs
,
30
(
1
), pp. 10–15.
8.
Zhang
,
J.
,
Nolan
,
T.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J. J.
,
2007
, “
Characterization of Membrane Blood Oxygenation Devices Using Computational Fluid Dynamics
,”
J. Membr. Sci.
,
288
(
1–2
), pp.
268
279
.
9.
Bhavsar
,
S. S.
,
Schmitz-Rode
,
T.
, and
Steinseifer
,
U.
,
2011
, “
Numerical Modeling of Anisotropic Fiber Bundle Behavior in Oxygenators
,”
Artif. Organs
,
35
(
11
), pp.
1095
1102
.
10.
Sano
,
Y.
,
Adachi
,
J.
, and
Nakayama
,
A.
,
2013
, “
A Porous Media Theory for Characterization of Membrane Blood Oxygenation Devices
,”
Heat Mass Transfer
,
49
(
7
), pp.
973
984
.
11.
Pelosi
,
A.
,
Sheriff
,
J.
,
Stevanella
,
M.
,
Fiore
,
G. B.
,
Bluestein
,
D.
, and
Redaelli
,
A.
,
2014
, “
Computational Evaluation of the Thrombogenic Potential of a Hollow-Fiber Oxygenator With Integrated Heat Exchanger During Extracorporeal Circulation
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
349
361
.
12.
Consolo
,
F.
,
Fiore
,
G. B.
,
Pelosi
,
A.
,
Reggiani
,
S.
, and
Redaelli
,
A.
,
2015
, “
A Numerical Performance Assessment of a Commercial Cardiopulmonary By-Pass Blood Heat Exchanger
,”
Med. Eng. Phys.
,
37
(
6
), pp.
584
592
.
13.
Sano
,
Y.
, and
Nakayama
,
A.
,
2012
, “
A Porous Media Approach for Analyzing a Countercurrent Dialyzer System
,”
ASME J. Heat Transfer
,
134
(
7
), p.
072602
.
14.
Zhang
,
J.
,
Taskin
,
M. E.
,
Koert
,
A.
,
Zhang
,
T.
,
Gellman
,
B.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2009
, “
Computational Design and In Vitro Characterization of an Integrated Maglev Pump-Oxygenator
,”
Artif. Organs
,
33
(
10
), pp.
805
817
.
15.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel—Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
16.
Boryczko
,
K.
,
Dzwinel
,
W.
, and
Yuen
,
D. A.
,
2003
, “
Dynamical Clustering of Red Blood Cells in Capillary Vessels
,”
J. Mol. Model.
,
9
(
1
), pp.
16
33
.
17.
Fedosov
,
D. A.
,
Caswell
,
B.
, and
Karniadakis
,
G. E.
,
2010
, “
A Multiscale Red Blood Cell Model With Accurate Mechanics, Rheology, and Dynamics
,”
Biophys. J.
,
98
(
10
), pp.
2215
2225
.
18.
Bessonov
,
N.
,
Babushkina
,
E.
,
Golovashchenko
,
S. F.
,
Tosenberger
,
A.
,
Ataullakhanov
,
F.
,
Panteleev
,
M.
,
Tokarev
,
A.
, and
Volpert
,
V.
,
2014
, “
Numerical Modelling of Cell Distribution in Blood Flow
,”
Math. Modell. Nat. Phenom.
,
9
(
6
), pp.
69
84
.
19.
Fedosov
,
D. A.
,
Noguchi
,
H.
, and
Gompper
,
G.
,
2013
, “
Multiscale Modeling of Blood Flow: From Single Cells to Blood Rheology
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
239
258
.
20.
Gambaruto
,
A. M.
,
2015
, “
Computational Haemodynamics of Small Vessels Using the Moving Particle Semi-Implicit (MPS) Method
,”
J. Comput. Phys.
,
302
, pp.
68
96
.
21.
Popel
,
A. S.
, and
Johnson
,
P. C.
,
2005
, “
Microcirculation and Hemorheology
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
43
69
.
22.
Lipowsky
,
H. H.
,
2005
, “
Microvascular Rheology and Hemodynamics
,”
Microcirculation
,
12
(
1
), pp.
5
15
.
23.
Das
,
B.
,
Enden
,
G.
, and
Popel
,
A. S.
,
1997
, “
Stratified Multiphase Model for Blood Flow in a Venular Bifurcation
,”
Ann. Biomed. Eng.
,
25
(
1
), pp.
135
153
.
24.
Jung
,
J.
,
Lyczkowski
,
R. W.
,
Panchal
,
C. B.
, and
Hassanein
,
A.
,
2006
, “
Multiphase Hemodynamic Simulation of Pulsatile Flow in a Coronary Artery
,”
J. Biomech.
,
39
(
11
), pp.
2064
2073
.
25.
Kim
,
Y. H.
,
VandeVord
,
P. J.
, and
Lee
,
J. S.
,
2008
, “
Multiphase Non-Newtonian Effects on Pulsatile Hemodynamics in a Coronary Artery
,”
Int. J. Numer. Methods Fluids
,
58
(
7
), pp.
803
825
.
26.
Jung
,
J.
, and
Hassanein
,
A.
,
2006
, “
Three-Phase CFD Analytical Modeling of Blood Flow
,”
Med. Eng. Phys.
,
30
(
1
), pp.
91
103
.
27.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2006
,
Transport Phenomena
,
2nd ed.
, revised,
Wiley
, New York.
28.
Sorbie
,
K. S.
,
Clifford
,
P. J.
, and
Jones
,
E. R. W.
,
1989
, “
The Rheology of Pseudoplastic Fluids in Porous Media Using Network Modeling
,”
J. Colloid Interface Sci.
,
130
(
2
), pp.
508
534
.
29.
Pearson
,
J. R. A.
, and
Tardy
,
P. M. J.
,
2002
, “
Models for Flow of Non-Newtonian and Complex Fluids Through Porous Media
,”
J. Non-Newtonian Fluid Mech.
,
102
(
2
), pp.
447
473
.
30.
Lopez
,
X.
,
Valvatne
,
P. H.
, and
Blunt
,
M. J.
,
2003
, “
Predictive Network Modeling of Single-Phase Non-Newtonian Flow in Porous Media
,”
J. Colloid Interface Sci.
,
264
(
1
), pp.
256
265
.
31.
Perrin
,
C. L.
,
Tardy
,
P. M. J.
,
Sorbie
,
K. S.
, and
Crawshaw
,
J. C.
,
2006
, “
Experimental and Modeling Study of Newtonian and Non-Newtonian Fluid Flow in Pore Network Micromodels
,”
J. Colloid Interface Sci.
,
295
(
2
), pp.
542
550
.
32.
Tosco
,
T.
,
Marchisio
,
D. L.
,
Lince
,
F.
, and
Sethi
,
R.
,
2013
, “
Extension of the Darcy–Forchheimer Law for Shear-Thinning Fluids and Validation Via Pore-Scale Flow Simulations
,”
Transp. Porous Media
,
96
(
1
), pp.
1
20
.
33.
Savins
,
J. G.
,
1969
, “
Non-Newtonian Flow Through Porous Media
,”
Ind. Eng. Chem.
,
61
(
10
), pp.
18
47
.
34.
Sochi
,
T.
,
2010
, “
Non-Newtonian Flow in Porous Media
,”
Polymer
,
51
(
22
), pp.
5007
5023
.
35.
Happel
,
J.
,
1959
, “
Viscous Flow Relative to Arrays of Cylinders
,”
AIChE J.
,
5
(
2
), pp.
174
177
.
36.
Hasimoto
,
H.
,
1959
, “
On the Periodic Fundamental Solutions of the Stokes Equations and Their Application to Viscous Flow Past a Cubic Array of Spheres
,”
J. Fluid Mech.
,
5
(
2
), pp.
317
328
.
37.
Sangani
,
A.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Through a Periodic Array of Spheres
,”
Int. J. Multiphase Flow
,
8
(
4
), pp.
343
360
.
38.
Sangani
,
A.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.
39.
Drummond
,
J. E.
, and
Tahir
,
M. I.
,
1984
, “
Laminar Viscous Flow Through Regular Arrays of Parallel Solid Cylinders
,”
Int. J. Multiphase Flow
,
10
(
5
), pp.
515
540
.
40.
Sparrow
,
E. M.
, and
Loeffler
,
A. L.
,
1959
, “
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
,”
AIChE J.
,
5
(
3
), pp.
325
330
.
41.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1993
, “
Flow of Generalized Newtonian Fluids Across a Periodic Array of Cylinders
,”
J. Rheol. (1978–Present)
,
37
(
3
), pp.
479
498
.
42.
der Westhuizen
,
J. V.
, and
Plessis
,
J. P. D.
,
1996
, “
An Attempt to Quantify Fibre Bed Permeability Utilizing the Phase Average Navier–Stokes Equation
,”
Composites, Part A
,
27
(
4
), pp.
263
269
.
43.
Gebart
,
B. R.
,
1992
, “
Permeability of Unidirectional Reinforcements for RTM
,”
J. Compos. Mater.
,
26
(
8
), pp.
1100
1133
.
44.
Yazdchi
,
K.
,
Srivastava
,
S.
, and
Luding
,
S.
,
2011
, “
Microstructural Effects on the Permeability of Periodic Fibrous Porous Media
,”
Int. J. Multiphase Flow
,
37
(
8
), pp.
956
966
.
45.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2010
, “
Parallel Flow Through Ordered Fibers: An Analytical Approach
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
114502
.
46.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2008
, “
Numerical Investigation of Flow in Fibrous Porous Media
,”
ECI
International Conference on Heat Transfer and Fluid Flow in Microscale
, Whistler, Canada, Sept. 21–26, pp.
21
26
.
47.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2011
, “
Transverse Permeability of Fibrous Porous Media
,”
Phys. Rev. E
,
83
(
4
), p.
046314
.
48.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2009
, “
Analytical Determination of Viscous Permeability of Fibrous Porous Media
,”
Int. J. Heat Mass Transfer
,
52
(9–10), pp.
2407
2414
.
49.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2011
, “
In-Plane Gas Permeability of Proton Exchange Membrane Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
,
196
(
7
), pp.
3559
3564
.
50.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
,
2007
, “
Pulsatile Blood Flow and Oxygen Transport Past a Circular Cylinder
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
202
215
.
51.
Edwards
,
D. A.
,
Shapiro
,
M.
,
Bar-Yoseph
,
P.
, and
Shapira
,
M.
,
1990
, “
The Influence of Reynolds Number Upon the Apparent Permeability of Spatially Periodic Arrays of Cylinders
,”
Phys. Fluids A
,
2
(
1
), pp.
45
55
.
52.
Yilmaz
,
F.
, and
Gundogdu
,
M. Y.
,
2008
, “
A Critical Review on Blood Flow in Large Arteries; Relevance to Blood Rheology, Viscosity Models, and Physiologic Conditions
,”
Korea-Aust. Rheol. J.
,
20
(
4
), pp.
197
211
.
53.
Marcinkowska-Gapińska
,
A.
,
Gapinski
,
J.
,
Elikowski
,
W.
,
Jaroszyk
,
F.
, and
Kubisz
,
L.
,
2007
, “
Comparison of Three Rheological Models of Shear Flow Behavior Studied on Blood Samples From Post-Infarction Patients
,”
Med. Biol. Eng. Comput.
,
45
(
9
), pp.
837
844
.
54.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.
55.
Quemada
,
D.
,
1978
, “
Rheology of Concentrated Disperse Systems—II: A Model for Non-Newtonian Shear Viscosity in Steady Flows
,”
Rheol. Acta
,
17
(
6
), pp.
632
642
.
56.
ANSYS
,
2011
, “
ANSYS Documentations, Release 14.5 ed.
,”
ANSYS, Inc.
, San Jose, CA.
57.
Fasano
,
A.
,
Santos
,
R.
, and
Sequeira
,
A.
,
2012
, “
Blood Coagulation: A Puzzle for Biologists: A Maze for Mathematicians
,”
Modeling of Physiological Flows
(MS&A—Modeling, Simulation and Applications), Vol.
5
,
D.
Ambrosi
,
A.
Quarteroni
,
G.
Rozza
, eds.,
Springer-Verlag
,
Italy
, pp.
41
75
.
58.
Leverett
,
L.
,
Hellums
,
J.
,
Alfrey
,
C.
, and
Lynch
,
E.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.
59.
Buchanan
,
J. R.
, Jr.
,
Kleinstreuer
,
C.
, and
Comer
,
J. K.
,
2000
, “
Rheological Effects on Pulsatile Hemodynamics in a Stenosed Tube
,”
Comput. Fluids
,
29
(
6
), pp.
695
724
.
You do not currently have access to this content.