A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

References

References
1.
Cook
,
J. L.
, and
Purdam
,
C.
,
2013
, “
Is Compressive Load a Factor in the Development of Tendinopathy?
Br. J. Sports Med.
,
46
(
3
), pp.
163
168
.
2.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.
3.
Williams
,
L. N.
,
Elder
,
S. H.
,
Bouvard
,
J. L.
, and
Horstemeyer
,
M. E.
,
2008
, “
The Anisotropic Compressive Mechanical Properties of the Rabbit Patellar Tendon
,”
Biorheology
,
45
(
5
), pp.
577
586
.
4.
Lee
,
S.-B.
,
Nakajima
,
T.
,
Luo
,
Z.-P.
,
Zobitz
,
M. E.
,
Chang
,
Y.-W.
, and
An
,
K.-N.
,
2000
, “
The Bursal and Articular Sides of the Supraspinatus Tendon Have Different Compressive Stiffness
,”
Clin. Biomech.
,
15
(
4
), pp.
241
247
.
5.
Ikeda
,
J.
,
Zhao
,
C.
,
Chen
,
Q.
,
Thoreson
,
A. R.
,
An
,
K.-N.
, and
Amadio
,
P. C.
,
2011
, “
Compressive Properties of cd-HA-Gelatin Modified Intrasynovial Tendon Allograft in Canine Model In Vivo
,”
J. Biomech.
,
44
(
9
), pp.
1793
1796
.
6.
Dourte
,
L. M.
,
Pathmanathan
,
L.
,
Jawad
,
A. F.
,
Iozzo
,
R. V.
,
Mienaltowski
,
M. J.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2012
, “
Influence of Decorin on the Mechanical, Compositional, and Structural Properties of the Mouse Patellar Tendon
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031005
.
7.
Main
,
E. K.
,
Goetz
,
J. E.
,
Rudert
,
M. J.
,
Goreham-Voss
,
C. M.
, and
Brown
,
T. D.
,
2011
, “
Apparent Transverse Compressive Material Properties of the Digital Flexor Tendons and the Median Nerve in the Carpal Tunnel
,”
J. Biomech.
,
44
(
5
), pp.
863
868
.
8.
Hadley
,
D. W.
,
Ward
,
I. M.
, and
Ward
,
J.
,
1965
, “
The Transverse Compression of Anisotropic Fibre Monofilaments
,”
Proc. R. Soc. A
,
285
(
1401
), pp.
275
286
.
9.
Pinnock
,
P. R.
,
Ward
,
I. M.
, and
Wolfe
,
J. M.
,
1966
, “
The Compression of Anisotropic Monofilaments
,”
Proc. R. Soc. A
,
291
(
1425
), pp.
267
278
.
10.
Abdul Jawad
,
S.
, and
Ward
,
I. M.
,
1978
, “
Transverse Compression of Oriented Nylon and Polyethylene Extrudates
,”
J. Mater. Sci.
,
13
(
7
), pp.
1381
1387
.
11.
Chakravarty
,
A. C.
,
1969
, “
Observations on Transverse Compression of Some Plant Fibers
,”
Text. Res. J.
,
39
(
9
), pp.
878
881
.
12.
Morris
,
S.
,
1968
, “
The Determination of the Lateral Compression Modulus of Fibres
,”
J. Text. Inst.
,
59
(
11
), pp.
536
547
.
13.
Phoenix
,
S. L.
, and
Skelton
,
J.
,
1974
, “
Transverse Compression Moduli and Yield Behavior of Some Orthotropic, High-Modulus Filaments
,”
Text. Res. J.
,
44
(
12
), pp.
934
940
.
14.
Singletary
,
J.
,
Davis
,
H.
,
Ramasubramanian
,
M. K.
,
Knoff
,
W.
, and
Toney
,
M.
,
2000
, “
The Transverse Compression of PPTA Fibers
,”
J. Mater. Sci.
,
35
(
3
), pp.
573
581
.
15.
Salisbury
,
S. T. S.
,
Buckley
,
C. P.
, and
Zavatsky
,
A. B.
,
2008
, “
Image-Based Non-Contact Method to Measure Cross-Sectional Areas and Shapes of Tendons and Ligaments
,”
Meas. Sci. Technol.
,
19
(
4
), p.
045705
.
16.
Woo
,
S. L.-Y.
,
Orlando
,
C. A.
,
Camp
,
J. F.
, and
Akeson
,
W. H.
,
1986
, “
Effects of Post-Mortem Storage by Freezing on Ligament Tensile Behavior
,”
J. Biomech.
,
19
(
5
), pp.
399
404
.
17.
Chimich
,
D.
,
Shrive
,
N.
,
Frank
,
C.
,
Marchuk
,
L.
, and
Bray
,
R.
,
1992
, “
Water Content Alters Viscoelastic Behaviour of the Normal Adolescent Rabbit Medial Collateral Ligament
,”
J. Biomech.
,
25
(
8
), pp.
831
837
.
18.
Hayward
,
A. T. J.
,
1977
,
Repeatability and Accuracy
,
Mechanical Engineering Publications
,
London
.
19.
Salisbury
,
S. T. S.
,
2008
, “
The Mechanical Properties of Tendon
,” D.Phil. thesis, University of Oxford, Oxford, UK.
20.
Abaqus
,
2005
,
abaqus Theory Manual
, Vol.
6.5-1
,
ABAQUS Inc.
,
Johnston, RI
, Chap. 3.1.1.
21.
Spencer
,
A. J. M.
,
1972
,
Deformations of Fibre-Reinforced Materials
,
Oxford University Press
,
Oxford, UK
.
22.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
23.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comp. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.
24.
Peña
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
Three Dimensional Finite Element Analysis of the Combined Behaviour of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.
25.
Mohamed
,
A.-N. A.
,
Brown
,
M. A.
, and
Shabana
,
A. A.
,
2010
, “
Study of the Ligament Tension and Cross-Section Deformation Using Nonlinear Finite Element/Multibody System Algorithms
,”
Multibody Syst. Dyn.
,
23
(
3
), pp.
227
248
.
26.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Tendon-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.
27.
Limbert
,
G.
,
Middleton
,
J.
, and
Taylor
,
M.
,
2004
, “
Finite Element Analysis of the Human ACL Subjected to Passive Anterior Tibial Loads
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
1
), pp.
1
8
.
28.
Sansour
,
C.
,
2008
, “
On the Physical Assumptions Underlying the Volumetric-Isochoric Split and the Case of Anisotropy
,”
Eur. J. Mech. A/Solids
,
27
(
1
), pp.
28
39
.
29.
Helfenstein
,
J.
,
Jabareen
,
M.
,
Mazza
,
E.
, and
Govindjee
,
S.
,
2010
, “
On Non-Physical Response in Models for Fiber-Reinforced Hyperelastic Materials
,”
Int. J. Solids Struct.
,
47
(
16
), pp.
2056
2061
.
30.
Gilchrist
,
M. D.
,
Murphy
,
J. G.
,
Parnell
,
W.
, and
Pierrat
,
B.
,
2014
, “
Modelling the Slight Compressibility of Anisotropic Soft Tissue
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3857
3865
.
31.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.
32.
Bonifasi-Lista
,
C.
,
Lake
,
S. P.
,
Small
,
M. S.
, and
Weiss
,
J. A.
,
2005
, “
Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading
,”
J. Orthop. Res.
,
23
(
1
), pp.
67
76
.
33.
Nye
,
J. F.
,
1985
,
Physical Properties of Crystals
,
Oxford University Press
,
Oxford, UK
.
34.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge, UK
.
35.
Cowin
,
S. C.
, and
Van Buskirk
,
W. C.
,
1986
, “
Thermodynamic Restrictions on the Elastic Constants of Bone
,”
J. Biomech.
,
19
(
1
), pp.
85
87
.
You do not currently have access to this content.