Prosthetic alignment, patient characteristics, and implant design are all factors in long-term survival of total knee arthroplasty (TKA), yet the level at which each of these factors contribute to implant loosening has not been fully described. Prior clinical and biomechanical studies have indicated tibial overload as a cause of early TKA revision. The purpose of this study was to determine the relationship between tibial component design and bone resection on tibial loading. Finite-element analysis (FEA) was performed after simulated implantation of metal backed (MB) and all-polyethylene (AP) TKA components in 5 and 15 mm of tibial resection into a validated intact tibia model. Proximal tibial strains significantly increased between 13% and 199% when implanted with AP components (p < 0.05). Strain significantly increased between 12% and 209% in the posterior tibial compartment with increased bone resection (p < 0.05). This study indicates elevated strains in AP implanted tibias across the entirety of the proximal tibial cortex, as well as a posterior shift in tibial loading in instances of increased resection depth. These results are consistent with trends observed in prior biomechanical studies and may associate the documented device history of tibial collapse in AP components with increased bone strain and overload beneath the prosthesis.

References

References
1.
Ritter
,
M. A.
,
Berend
,
M. E.
,
Meding
,
J. B.
,
Keating
,
E. M.
,
Faris
,
M. P.
, and
Crites
,
B. M.
,
2001
, “
Long-Term Follow-Up of Anatomic Graduated Components: Posterior Cruciate-Retaining Total Knee Replacement
,”
Clin. Orthop. Relat. Res.
,
388
, pp.
51
57
.
2.
Vessely
,
M. B.
,
Whaley
,
A. L.
,
Harmsen
,
W. S.
,
Schlek
,
C. D.
, and
Berry
,
D. J.
,
2006
, “
Long-Term Survivorship and Failure Modes of 1000 Cemented Condylar Total Knee Arthroplasties
,”
Clin. Orthop. Relat. Res.
,
452
, pp.
28
34
.
3.
Emerson
,
R. H.
,
Higgins
,
L. L.
, and
Head
,
W. C.
,
2000
, “
The AGC Total Knee Prosthesis at Average 11 Years
,”
J. Arthroplasty
,
15
(
4
), pp.
418
423
.
4.
Aglietti
,
P.
,
Buzzi
,
R.
,
DeFelice
,
R.
, and
Giron
,
F.
,
1999
, “
The Insall-Burstein Total Knee Replacement in Osteoarthritis: A 10-Year Minimum Follow-Up
,”
J. Arthroplasty
,
14
(
5
), pp.
560
565
.
5.
Ranawat
,
C. S.
,
Flynn
,
W. F.
,
Saddler
,
S.
,
Hansraj
,
K. K.
, and
Maynard
,
M. J.
,
1993
, “
Long-Term Results of the Total Condylar Knee Arthroplasty, A 15-Year Survivorship Study
,”
Clin. Orthop. Relat. Res.
,
286
, pp.
94
102
.
6.
Ritter
,
M. A.
,
2009
, “
The Anatomical Graduated Component Total Knee Replacement: A Long-Term Evaluation With 20-Year Survival Analysis
,”
J. Bone Jt. Surg., Br.
Vol.,
91
(
6
), pp.
745
749
.
7.
Berend
,
M. E.
,
Ritter
,
M. A.
,
Meding
,
J. B.
,
Faris
,
P. M.
,
Keating
,
E. M.
,
Redelman
,
R.
,
Faris
,
G. W.
, and
Davis
,
K. E.
,
2004
, “
Tibial Component Failure Mechanisms in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
428
, pp.
26
34
.
8.
Faris
,
P. M.
,
Ritter
,
M. A.
,
Keating
,
E. M.
,
Meding
,
J. B.
, and
Harty
,
L. D.
,
2003
, “
The AGC All-Polyethylene Tibial Component: A Ten-Year Clinical Evaluation
,”
J. Bone Jt. Surg. Am.
,
85-A
(
3
), pp.
489
493
.
9.
Garg
,
A.
, and
Walker
,
P. S.
,
1986
, “
The Effect of the Interface on the Bone Stresses Beneath Tibial Components
,”
J. Biomech.
,
19
(
12
), pp.
957
967
.
10.
Chaput
,
C. D.
,
Weeden
,
S. H.
,
Hyman
,
W. A.
, and
Hitt
,
K. D.
,
2004
, “
Mechanical Bone Strength of the Tibial Resection Surface at Increasing Distance From the Joint Line in Total Knee Arthroplasty
,”
J. Surg. Orthop. Adv.
,
13
(
4
), pp.
195
198
.
11.
Small
,
S. R.
,
Berend
,
M. E.
,
Ritter
,
M. A.
, and
Buckley
,
C. A.
,
2010
, “
A Comparison in Proximal Tibial Strain Between Metal-Backed and All-Polyethylene Anatomic Graduated Component Total Knee Arthroplasty Tibial Components
,”
J. Arthroplasty
,
25
(
5
), pp.
820
825
.
12.
Berend
,
M. E.
,
Small
,
S. R.
,
Ritter
,
M. A.
, and
Buckley
,
C. A.
,
2010
, “
The Effects of Bone Resection Depth and Malalignment on Strain in the Proximal Tibia After Total Knee Arthroplasty
,”
J. Arthroplasty
,
25
(
2
), pp.
314
318
.
13.
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2000
, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.
14.
Heiner
,
A. D.
, and
Brown
,
T. D.
,
2001
, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
,
34
(
6
), pp.
773
781
.
15.
Heiner
,
A. D.
,
2008
, “
Structural Properties of Fourth-Generation Composite Femurs and Tibias
,”
J. Biomech.
,
41
(
15
), pp.
3282
3284
.
16.
Gardner
,
M. P.
,
Chong
,
A. C. M.
,
Pollock
,
A. G.
, and
Wooley
,
P. H.
,
2010
, “
Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibial Models
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
613
620
.
17.
Completo
,
A.
,
Fonseca
,
F.
, and
Simoes
,
J. A.
,
2007
, “
Finite Element and Experimental Cortex Strains of the Intact and Implanted Tibia
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
791
797
.
18.
Completo
,
A.
,
Fonseca
,
F.
, and
Simoes
,
J. A.
,
2008
, “
Strain Shielding in Proximal Tibial of Stemmed Knee Prosthesis: Experimental Study
,”
J. Biomech.
,
41
(
3
), pp.
560
566
.
19.
Completo
,
A.
,
Talaia
,
P.
,
Fonseca
,
F.
, and
Simoes
,
J. A.
,
2009
, “
Relationship of Design Features of Stemmed Tibial Knee Prosthesis With Stress Shielding and End-of-Stem Pain
,”
Mater. Des.
,
30
(
4
), pp.
1391
1397
.
20.
Zhao
,
D.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2007
, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.
21.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
(
1
), pp.
51
61
.
22.
Berend
,
M. E.
,
Small
,
S. R.
,
Ritter
,
M. A.
,
Buckley
,
C. A.
,
Merk
,
J. C.
, and
Dierking
,
W. K.
,
2009
, “
Effects of Coronal Plane Conformity on Tibial Loading in TKA: A Comparison of AGC Flat Versus Conforming Articulations
,”
Surg. Technol. Int.
,
18
, pp.
207
212
.
23.
Berend
,
M. E.
,
Small
,
S. R.
,
Ritter
,
M. A.
,
Buckley
,
C. A.
,
Merk
,
J. C.
, and
Dierking
,
W. K.
,
2010
, “
Effects of Femoral Component Size on Proximal Tibial Strain With Anatomic Graduated Components Total Knee Arthroplasty
,”
J. Arthroplasty
,
25
(
1
), pp.
58
63
.
24.
Glisson
,
R. R.
,
Graham
,
R. D.
,
Musgrave
,
D. S.
, and
Vail
,
T. P.
,
2000
, “
Validity of Photoelastic Strain Measurement on Cadaveric Proximal Femora
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
423
429
.
25.
Green
,
G. V.
,
Berend
,
K. R.
,
Berend
,
M. E.
,
Glisson
,
R. R.
, and
Vail
,
T. P.
,
2002
, “
The Effects of Varus Tibial Alignment on Proximal Tibial Surface Strain in Total Knee Arthroplasty: The Posterior Medial Hotspot
,”
J. Arthroplasty
,
17
(
8
), pp.
1033
1039
.
26.
Brihault
,
J.
,
Navacchia
,
A.
,
Pianigiani
,
S.
,
Labey
,
L.
,
De Corte
,
R.
,
Pascale
,
V.
, and
Innocenti
,
B.
,
2016
, “
All-Polyethylene Tibial Components Generate Higher Stress and Micromotions Than Metal-Backed Tibial Components in Total Knee Arthroplasty
,”
Knee Surgery, Sports Traumatology, Arthroscopy
(in press).
27.
Hyldahl
,
H.
,
Regner
,
L.
,
Carlsson
,
L.
,
Karrholm
,
J.
, and
Weidenhielm
,
L.
,
2005
, “
All-Polyethylene vs. Metal-Backed Tibial Component in Total Knee Arthroplasty—A Randomized RSA Study Comparing Early Fixation of Horizontally and Completely Cemented Tibial Components, Part 1. Horizontally Cemented Components: AP Better Fixated Than MB
,”
Acta Orthop.
,
76
(
6
), pp.
769
777
.
28.
Hyldahl
,
H.
,
Regner
,
L.
,
Carlsson
,
L.
,
Karrholm
,
J.
, and
Weidenhielm
,
L.
,
2005
, “
All-Polyethylene vs. Metal-Backed Tibial Component in Total Knee Arthroplasty—A Randomized RSA Study Comparing Early Fixation of Horizontally and Completely Cemented Tibial Components, Part 2. Completely Cemented Components: MB Not Superior to AP Components
,”
Acta Orthop.
,
76
(
6
), pp.
778
784
.
29.
Gray
,
H. A.
,
Zavatsky
,
A. B.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Gill
,
H. S.
,
2007
, “
Experimental Validation of a Finite Element Model of a Composite Tibia
,”
Proc. Inst. Mech. Eng. Part H
,
221
(
3
), pp.
315
324
.
30.
Au
,
A. G.
,
Liggins
,
A. B.
,
Raso
, V
. J.
, and
Amirfazli
,
A.
,
2005
, “
A Parametric Analysis of Fixation Post Shape in Tibial Knee Prostheses
,”
Med. Eng. Phys.
,
27
(
2
), pp.
123
134
.
31.
Yosibash
,
Z.
,
Padan
,
R.
,
Joskowicz
,
L.
, and
Milgrom
,
C.
,
2007
, “
A CT-Based High-Order Finite Element Analysis of the Human Proximal Femur Compared to In-Vitro Experiment
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
297
309
.
32.
Austman
,
R. L.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Dunning
,
C. E.
,
2008
, “
The Effect of the Density-Modulus Relationship Selected to Apply Material Properties in a Finite Element Model of Long Bone
,”
J Biomech.
,
41
(
15
), pp.
3171
3176
.
33.
Tarnita
,
D.
,
Popa
,
D.
,
Tarnita
,
D. N.
, and
Grecu
,
D.
,
2006
, “
CAD Method for Three-Dimensional Model of the Tibia Bone and Study of Stresses Using the Finite Element Method
,”
Rom. J. Morphol. Embryol.
,
47
(
2
), pp.
181
186
.
34.
Taylor
,
M.
,
Tanner
,
K. E.
, and
Freeman
,
M. A. R.
,
1998
, “
Finite Element Analysis of the Implanted Proximal Tibia: A Relationship Between the Initial Cancellous Bone Stresses and Implant Migration
,”
J. Biomech.
,
31
(
4
), pp.
303
310
.
You do not currently have access to this content.