The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 − 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.

References

References
1.
Langton
,
D.
,
Sidaginamale
,
R.
,
Lord
,
J. K.
,
Nargol
,
A. V. F.
, and
Joyce
,
T.
,
2012
, “
Taper Junction Failure in Large-Diameter Metal-on-Metal Bearings
,”
Bone Jt. Res.
,
1
(
4
), pp.
56
63
.
2.
Lavigne
,
M.
,
Belzile
,
E. L.
,
Roy
,
A.
,
Morin
,
F.
,
Amzica
,
T.
, and
Vendittoli
,
P.-A.
,
2011
, “
Comparison of Whole-Blood Metal Ion Levels in Four Types of Metal-on-Metal Large-Diameter Femoral Head Total Hip Arthroplasty: The Potential Influence of the Adapter Sleeve
,”
J. Bone Jt. Surg. Am.
,
93
(
Suppl. 2
), pp.
128
136
.
3.
Gilbert
,
J. L.
,
Buckley
,
C. A.
, and
Jacobs
,
J. J.
,
1993
, “
in vivo Corrosion of Modular Hip Prosthesis Components in Mixed and Similar Metal Combinations. The Effect of Crevice, Stress, Motion, and Alloy Coupling
,”
J. Biomed. Mater. Res.
,
27
(
12
), pp.
1533
1544
.
4.
Delaunay
,
C.
,
Petit
,
I.
,
Learmonth
,
I. D.
,
Oger
,
P.
, and
Vendittoli
,
P. A.
,
2010
, “
Metal-on-Metal Bearings Total Hip Arthroplasty: The Cobalt and Chromium Ions Release Concern
,”
Orthop. Traumatol. Surg. Res.
,
96
(
8
), pp.
894
904
.
5.
Donaldson
,
F. E.
,
Coburn
,
J. C.
, and
Siegel
,
K. L.
,
2014
, “
Total Hip Arthroplasty Head-Neck Contact Mechanics: A Stochastic Investigation of Key Parameters
,”
J. Biomech.
,
47
(
7
), pp.
1634
1641
.
6.
Pennock
,
A. T.
,
Schmidt
,
A. H.
, and
Bourgeault
,
C. A.
,
2002
, “
Morse-Type Tapers
,”
J. Arthroplasty
,
17
(
6
), pp.
773
778
.
7.
Lavernia
,
C. J.
,
Baerga
,
L.
,
Barrack
,
R. L.
,
Tozakoglou
,
E.
,
Cook
,
S. D.
,
Lata
,
L.
, and
Rossi
,
M. D.
,
2009
, “
The Effects of Blood and Fat on Morse Taper Disassembly Forces
,”
Am. J. Orthop.
,
38
(
4
), pp.
187
190
.
8.
Hothi
,
H. S.
,
Whittaker
,
R. K.
,
Meswania
,
J. M.
,
Blunn
,
G.
,
Skinner
,
J. A.
, and
Hart
,
A. J.
,
2015
, “
Influence of Stem Type on Material Loss at the Metal-on-Metal Pinnacle Taper Junction
,”
Proc. Inst. Mech. Eng. Part H
,
229
(
1
), pp.
91
97
.
9.
Munir
,
S.
,
Walter
,
W. L.
, and
Walsh
,
W. R.
,
2015
, “
Variations in the Trunnion Surface Topography Between Different Commercially Available Hip Replacement Stems
,”
J. Orthop. Res.
,
33
(
1
), pp.
98
105
.
10.
Elkins
,
J. M.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
,
2014
, “
Stability and Trunnion Wear Potential in Large-Diameter Metal-on-Metal Total Hips: A Finite Element Analysis
,”
Clin. Orthop. Relat. Res.
,
472
(
2
), pp.
529
542
.
11.
Shareef
,
N.
, and
Levine
,
D.
,
1996
, “
Effect of Manufacturing Tolerances on the Micromotion at the Morse Taper Interface in Modular Hip Implants Using the Finite Element Technique
,”
Biomaterials
,
17
(
6
), pp.
623
630
.
12.
Baxmann
,
M.
,
Jauch
,
S. Y.
,
Schilling
,
C.
,
Blömer
,
W.
,
Grupp
,
T. M.
, and
Morlock
,
M. M.
,
2013
, “
The Influence of Contact Conditions and Micromotions on the Fretting Behavior of Modular Titanium Alloy Taper Connections
,”
Med. Eng. Phys.
,
35
(
5
), pp.
676
683
.
13.
Zhang
,
T.
,
Harrison
,
N. M.
,
McDonnell
,
P. F.
,
McHugh
,
P. E.
, and
Leen
,
S. B.
,
2013
, “
Micro-Macro Wear-Fatigue of Modular Hip Implant Taper-Lock Coupling
,”
J. Strain Anal. Eng. Des.
,
49
(
1
), pp.
2
18
.
14.
Chu
,
Y.
,
Elias
,
J. J.
,
Duda
,
G. N.
,
Frassica
,
F. J.
, and
Chao
,
E. Y.
,
2000
, “
Stress and Micromotion in the Taper Lock Joint of a Modular Segmental Bone Replacement Prosthesis
,”
J. Biomech.
,
33
(
9
), pp.
1175
1179
.
15.
Tang
,
C.-B.
,
Liul
,
S.-Y.
,
Zhou
,
G.-X.
,
Yu
,
J.-H.
,
Zhang
,
G.-D.
,
Bao
,
Y.-D.
, and
Wang
,
Q.-J.
,
2012
, “
Nonlinear Finite Element Analysis of Three Implant-Abutment Interface Designs
,”
Int. J. Oral Sci.
,
4
(
2
), pp.
101
108
.
16.
Black
,
J.
,
2005
,
Biological Performance of Materials: Fundamentals of Biocompatibility
,
CRC Press
, Boca Raton, FL.
17.
Parmley
,
R. O.
,
1997
,
Standard Handbook of Fastening and Joining
,
McGraw-Hill
, New York.
18.
Mary
,
C.
, and
Fouvry
,
S.
,
2007
, “
Numerical Prediction of Fretting Contact Durability Using Energy Wear Approach: Optimisation of Finite-Element Model
,”
Wear
,
263
(
1–6
), pp.
444
450
.
19.
Abdullah
,
K.
,
2010
, “
Study of Factors Affecting Taper Joint Failures in Modular Hip Implant Using Finite Element Modelling
,”
Modeling Simulation and Optimization: Focus on Application
,
InTech
, Rijeka, Croatia, pp.
121
134
.
20.
Swaminathan
,
V.
, and
Gilbert
,
J. L.
,
2012
, “
Fretting Corrosion of CoCrMo and Ti6Al4V Interfaces
,”
Biomaterials
,
33
(
22
), pp.
5487
5503
.
21.
Liu
,
F.
,
Leslie
,
I.
,
Williams
,
S.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2008
, “
Development of Computational Wear Simulation of Metal-on-Metal Hip Resurfacing Replacements
,”
J. Biomech.
,
41
(
3
), pp.
686
694
.
22.
Fessler
,
H.
, and
Fricker
,
D. C.
,
1989
, “
Friction in Femoral Prosthesis and Photoelastic Model Cone Taper Joints
,”
Proc. Inst. Mech. Eng. H.
,
203
(
1
), pp.
1
14
.
23.
van Beek
,
A.
,
2006
,
Advanced Engineering Design
, TU Delft, Delft, The Netherlands.
24.
Rubenstein
,
C.
,
1956
, “
A General Theory of the Surface Friction of Solids
,”
Proc. Phys. Soc.
,
69
(
9
), pp.
921
933
.
25.
Swaminathan
,
V.
, and
Gilbert
,
J. L.
,
2013
, “
Potential and Frequency Effects on Fretting Corrosion of Ti6Al4V and CoCrMo Surfaces
,”
J. Biomed. Mater. Res. Part A
,
101
(
9
), pp.
2602
2612
.
26.
McColl
,
I.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
.
27.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
You do not currently have access to this content.