Detailed knowledge of the loading conditions within the human body is essential for the development and optimization of treatments for disorders and injuries of the musculoskeletal system. While loads in the major joints of the lower limb have been the subject of extensive study, relatively little is known about the forces applied to the individual bones of the foot. The objective of this study was to use a detailed musculoskeletal model to compute the loads applied to the metatarsal bones during gait across several healthy subjects. Motion-captured gait trials and computed tomography (CT) foot scans from four healthy subjects were used as the inputs to inverse dynamic simulations that allowed the computation of loads at the metatarsal joints. Low loads in the metatarsophalangeal (MTP) joint were predicted before terminal stance, however, increased to an average peak of 1.9 times body weight (BW) before toe-off in the first metatarsal. At the first tarsometatarsal (TMT) joint, loads of up to 1.0 times BW were seen during the early part of stance, reflecting tension in the ligaments and muscles. These loads subsequently increased to an average peak of 3.0 times BW. Loads in the first ray were higher compared to rays 2–5. The joints were primarily loaded in the longitudinal direction of the bone.

References

References
1.
D'Lima
,
D. D.
,
Fregly
,
B. J.
,
Patil
,
S.
,
Steklov
,
N.
, and
Colwell
,
C. W.
,
2012
, “
Knee Joint Forces: Prediction, Measurement, and Significance
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
95
102
.
2.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.
3.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kääb
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.
4.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
5.
Kirane
,
Y. M.
,
Michelson
,
J. D.
, and
Sharkey
,
N. A.
,
2008
, “
Contribution of the Flexor Hallucis Longus to Loading of the First Metatarsal and First Metatarsophalangeal Joint
,”
Foot Ankle Int.
,
29
(
4
), pp.
367
377
.
6.
Jacob
,
H. A.
,
2001
, “
Forces Acting in the Forefoot During Normal Gait—An Estimate
,”
Clin. Biomech. (Bristol, Avon
),
16
(
9
), pp.
783
792
.
7.
Cracchiolo
,
A.
, 3rd,
Swanson
,
A.
, and
Swanson
,
G. D.
,
1981
, “
The Arthritic Great Toe Metatarsophalangeal Joint: A Review of Flexible Silicone Implant Arthroplasty From Two Medical Centers
,”
Clin. Orthop. Relat. Res.
,
157
, pp.
64
69
.
8.
Sharkey
,
N. A.
,
Ferris
,
L.
,
Smith
,
T. S.
, and
Matthews
,
D. K.
,
1995
, “
Strain and Loading of the Second Metatarsal During Heel-Lift
,”
J. Bone Jt. Surg. Am.
,
77
, pp.
1050
1057
.
9.
Stokes
,
I.
,
Hutton
,
W.
, and
Stott
,
J. R.
,
1979
, “
Forces Acting on the Metatarsals During Normal Walking
,”
J. Anat.
,
129
(
3
), pp.
579
590
.
10.
Wyss
,
U. P.
,
McBride
,
I.
,
Murphy
,
L.
,
Cooke
,
T. D.
, and
Olney
,
S. J.
,
1990
, “
Joint Reaction Forces at the First MTP Joint in a Normal Elderly Population
,”
J. Biomech.
,
23
(
10
), pp.
977
984
.
11.
Cheung
,
J. T.-M.
,
Zhang
,
M.
,
Leung
,
A. K.-L.
, and
Fan
,
Y.-B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
,
38
(
5
), pp.
1045
1054
.
12.
Liacouras
,
P. C.
, and
Wayne
,
J. S.
,
2007
, “
Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
811
817
.
13.
Wu
,
L.
,
2007
, “
Nonlinear Finite Element Analysis for Musculoskeletal Biomechanics of Medial and Lateral Plantar Longitudinal Arch of Virtual Chinese Human After Plantar Ligamentous Structure Failures
,”
Clin. Biomech. (Bristol, Avon
),
22
(
2
), pp.
221
229
.
14.
Carbes
,
S.
,
Telfer
,
S. T. S.
,
Woodburn
,
J.
,
Oosterwaal
,
M.
, and
Rasmussen
,
J.
,
2011
, “
A New Multisegmental Foot Model and Marker Protocol for Accurate Simulation of the Foot Biomechanics During Walking
,” Congress of the International Society of Biomechanics (
ISB 2011
),
Brussels
, Belgium, July 3–7, Paper No. 183.
15.
Carbes
,
S.
,
Tørholm Christensen
,
S.
, and
Rasmussen
,
J.
,
2011
, “
A Detailed Twenty-Six Segments Kinematic Foot Model for Biomechanical Simulation
,”
A-FOOTPRINT (Ankle and Foot Orthotic Personalisation Via Rapid Manufacturing) Project
, Funded by the European Commission Seventh Framework Programme, Glasgow Caledonian University, Glasgow, UK.
16.
Oosterwaal
,
M.
,
Telfer
,
S.
,
Tørholm Christensen
,
S.
,
Carbes
,
S.
,
van Rhijn
,
L.
,
Macduff
,
R.
,
Meijer
,
K.
, and
Woodburn
,
J.
,
2011
, “
Generation of Subject-Specific, Dynamic, Multisegment Ankle and Foot Models to Improve Orthotic Design: A Feasibility Study
,”
BMC Musculoskeletal Disord.
,
12
(
1
), pp.
256
266
.
17.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.
18.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.
19.
Lundgren
,
P.
,
Nester
,
C.
,
Liu
,
A.
,
Arndt
,
A.
,
Jones
,
R.
,
Stacoff
,
A.
,
Wolf
,
P.
, and
Lundberg
,
A.
,
2008
, “
Invasive In Vivo Measurement of Rear-, Mid- and Forefoot Motion During Walking
,”
Gait Posture
,
28
(
1
), pp.
93
100
.
20.
Cailliet
,
R.
,
2004
,
The Illustrated Guide to Functional Anatomy of the Musculoskeletal System
,
D J R Evans
, AMA Press, Chicago, IL.
21.
Stagni
,
R.
,
Leardini
,
A.
, and
Ensini
,
A.
,
2004
, “
Ligament Fibre Recruitment at the Human Ankle Joint Complex in Passive Flexion
,”
J. Biomech.
,
37
(
12
), pp.
1823
1829
.
22.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.
23.
Siegler
,
S.
,
Udupa
,
J. K.
,
Ringleb
,
S. I.
,
Imhauser
,
C. W.
,
Hirsch
,
B. E.
,
Odhner
,
D.
,
Saha
,
P. K.
,
Okereke
,
E.
, and
Roach
,
N.
,
2005
, “
Mechanics of the Ankle and Subtalar Joints Revealed Through a 3d Quasi-Static Stress MRI Technique
,”
J. Biomech.
,
38
(
3
), pp.
567
578
.
24.
Moraes do Carmo
,
C. C.
,
Fonseca de Almeida Melão
,
L. I.
,
Valle de Lemos Weber
,
M. F.
,
Trudell
,
D.
, and
Resnick
,
D.
,
2008
, “
Anatomical Features of Plantar Aponeurosis: Cadaveric Study Using Ultrasonography and Magnetic Resonance Imaging
,”
Skeletal Radiol.
,
37
(
10
), pp.
929
935
.
25.
Wright
,
I.
,
Neptune
,
R.
,
van Den Bogert
,
A.
, and
Nigg
,
B.
,
1998
, “
Passive Regulation of Impact Forces in Heel-Toe Running
,”
Clin. Biomech. (Bristol, Avon
),
13
(
7
), pp.
521
531
.
26.
Kitaoka
,
H. B.
,
Luo
,
Z. P.
,
Growney
,
E. S.
,
Berglund
,
L. J.
, and
An
,
K. N.
,
1994
, “
Material Properties of the Plantar Aponeurosis
,”
Foot Ankle Int.
,
15
(
10
), pp.
557
560
.
27.
Ward
,
K. A.
, and
Soames
,
R. W.
,
1997
, “
Morphology of the Plantar Calcaneocuboid Ligaments
,”
Foot Ankle Int.
,
18
(
10
), pp.
649
653
.
28.
Taniguchi
,
A.
,
Tanaka
,
Y.
,
Takakura
,
Y.
,
Kadono
,
K.
,
Maeda
,
M.
, and
Yamamoto
,
H.
,
2003
, “
Anatomy of the Spring Ligament
,”
J. Bone Jt. Surg. Am.
,
85-A
, pp.
2174
2178
.
29.
Patil
,
V.
,
Ebraheim
,
N. A.
,
Frogameni
,
A.
, and
Liu
,
J.
,
2007
, “
Morphometric Dimensions of the Calcaneonavicular (Spring) Ligament
,”
Foot Ankle Int.
,
28
(
8
), pp.
927
932
.
30.
Mengiardi
,
B.
,
Zanetti
,
M.
,
Schöttle
,
P. B.
,
Vienne
,
P.
,
Bode
,
B.
,
Hodler
,
J.
, and
Pfirrmann
,
C. W. A.
,
2005
, “
Spring Ligament Complex: MR Imaging-Anatomic Correlation and Findings in Asymptomatic Subjects
,”
Radiology
,
237
(
1
), pp.
242
249
.
31.
de Zee
,
M.
,
Dalstra
,
M.
,
Cattaneo
,
P. M.
,
Rasmussen
,
J.
,
Svensson
,
P.
, and
Melsen
,
B.
,
2007
, “
Validation of a Musculo-Skeletal Model of the Mandible and Its Application to Mandibular Distraction Osteogenesis
,”
J. Biomech.
,
40
(
6
), pp.
1192
1201
.
32.
Magee
,
D. J.
,
1997
,
Orthopedic Physical Assessment
,
3rd ed.
,
W.B. Saunders
, Philadelphia, PA.
33.
Winson
,
I.
,
Lundberg
,
A.
, and
Bylund
,
C.
,
1995
, “
The Pattern of Motion of the Longitudinal Arch of the Foot
,”
Foot
,
4
(
3
), pp.
151
154
.
34.
Arndt
,
A.
,
Wolf
,
P.
,
Liu
,
A.
,
Nester
,
C.
,
Stacoff
,
A.
,
Jones
,
R.
,
Lundgren
,
P.
, and
Lundberg
,
A.
,
2007
, “
Intrinsic Foot Kinematics Measured In Vivo During the Stance Phase of Slow Running
,”
J. Biomech.
,
40
(
12
), pp.
2672
2678
.
35.
McBride
,
I. D.
,
Wyss
,
U. P.
,
Cooke
,
T. D.
,
Murphy
,
L.
,
Phillips
,
J.
, and
Olney
,
S. J.
,
1991
, “
First Metatarsophalangeal Joint Reaction Forces During High-Heel Gait
,”
Foot Ankle
,
11
(
5
), pp.
282
288
.
36.
Sharkey
,
A.
,
Donahue
,
S. W.
, and
Ferris
,
L.
,
1999
, “
Biomechanical Consequences of Plantar Fascial Release or Rupture During Gait. Part II: Alterations in Forefoot Loading
,”
Foot Ankle Int.
,
20
(
2
), pp.
86
96
.
37.
Sharkey
,
N. A.
, and
Hamel
,
A. J.
,
1998
, “
A Dynamic Cadaver Model of the Stance Phase of Gait: Performance Characteristics and Kinetic Validation
,”
Clin. Biomech. (Bristol, Avon)
,
13
(
6
), pp.
420
433
.
38.
Wong
,
D. W.
,
Zhang
,
M.
,
Yu
,
J.
, and
Leung
,
A. K. L.
,
2014
, “
Biomechanics of First Ray Hypermobility: An Investigation on Joint Force During Walking Using Finite Element Analysis
,”
Med. Eng. Phys.
,
36
(
11
), pp.
1388
1393
.
39.
Kristen
,
K. H.
,
Berger
,
K.
,
Berger
,
C.
,
Kampla
,
W.
,
Anzböck
,
W.
, and
Weitzel
,
S. H.
,
2005
, “
The First Metatarsal Bone Under Loading Conditions: A Finite Element Analysis
,”
Foot Ankle Clin.
,
10
(
1
), pp.
1
14
.
You do not currently have access to this content.