Since the meniscus has limited capacity to self-repair, creating a long-lasting meniscus replacement may help reduce the incidence of osteoarthritis (OA) after meniscus damage. As a first step toward this goal, this study evaluated the mechanical integrity of a decellularized, laser drilled (LD) meniscus as a potential scaffold for meniscal engineering. To evaluate the decellularization process, 24 porcine menisci were processed such that one half remained native tissue, while the other half was decellularized in sodium dodecyl sulphate (SDS). To evaluate the laser drilling process, 24 additional menisci were decellularized, with one half remaining intact while the other half was LD. Decellularization did not affect the tensile properties, but had significant effects on the cyclic compressive hysteresis and unconfined compressive stress relaxation. Laser drilling decreased the Young's modulus and instantaneous stress during unconfined stress relaxation and the circumferential ultimate strength during tensile testing. However, the losses in mechanical integrity in the LD menisci were generally smaller than the variance observed between samples, and thus, the material properties for the LD tissue remained within a physiological range. In the future, optimization of laser drilling patterns may improve these material properties. Moreover, reseeding the construct with cells may further improve the mechanical properties prior to implantation. As such, this work serves as a proof of concept for generating decellularized, LD menisci scaffolds for the purposes of meniscal engineering.

References

References
1.
Garrett
,
W.
,
Swiontkowski
,
M.
,
Weinstein
,
J.
,
Callaghan
,
J.
,
Rosier
,
R.
,
Berry
,
D.
,
Harrast
,
J.
, and
Derosa
,
G.
,
2006
, “
Forum American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part II, Certification Examination Case Mix
,”
J. Bone Joint Surg.
,
88-A
(
3
), pp.
660
667
.
2.
Roos
,
H.
,
Laurén
,
M.
,
Adalberth
,
T.
,
Roos
,
E. M.
,
Jonsson
,
K.
, and
Lohmander
,
L. S.
,
1998
, “
Knee Osteoarthritis After Meniscectomy: Prevalence of Radiographic Changes After Twenty-One Years, Compared With Matched Controls
,”
Arthritis Rheum.
,
41
(
4
), pp.
687
93
.
3.
Rangger
,
C.
,
Klestil
,
T.
,
Gloetzer
,
W.
,
Kemmler
,
G.
, and
Benedetto
,
K. P.
,
1995
, “
Osteoarthritis After Arthroscopic Partial Meniscectomy
,”
Am. J. Sports Med.
,
23
(
2
), pp.
240
244
.
4.
Baratz
,
M. E.
,
Fu
,
F. H.
, and
Mengato
,
R.
,
1986
, “
Meniscal Tears: The Effect of Meniscectomy and of Repair on Intraarticular Contact Areas Preliminary Report
,”
Am. J. Sports Med.
,
14
(
4
), pp.
270
275
.
5.
Englund
,
M.
,
Guermazi
,
A.
, and
Lohmander
,
S. L.
,
2009
, “
The Role of the Meniscus in Knee Osteoarthritis: A Cause or Consequence?
Radiol. Clin. N. Am.
,
47
(
4
), pp.
703
712
.
6.
Athanasiou
,
K. A.
, and
Sanchez-Adams
,
J.
,
2009
,
Engineering the Knee Meniscus
, Vol. 1,
K. A.
Athanasiou
, ed.,
Morgan & Claypool
,
San Rafael, CA
.
7.
Maier
,
D.
,
Braeun
,
K.
,
Steinhauser
,
E.
,
Ueblacker
,
P.
,
Oberst
,
M.
,
Kreuz
,
P. C.
,
Roos
,
N.
,
Martinek
,
V.
, and
Imhoff
,
A. B.
,
2007
, “
In Vitro Analysis of an Allogenic Scaffold for Tissue-Engineered Meniscus Replacement
,”
J. Orthop. Res.
,
25
(
12
), pp.
1598
1608
.
8.
Hoben
,
G. M.
,
Hu
,
J. C.
,
James
,
R. A.
, and
Athanasiou
,
K. A.
,
2007
, “
Self-Assembly of Fibrochondrocytes and Chondrocytes for Tissue Engineering of the Knee Meniscus
,”
Tissue Eng.
,
13
(
5
), pp.
939
946
.
9.
Testa Pezzin
,
A. P.
,
Cardoso
,
T. P.
,
do Carmo Alberto Rincón
,
M.
,
de Carvalho Zavaglia
,
C. A.
, and
de Rezende Duek
,
E. A.
,
2003
, “
Bioreabsorbable Polymer Scaffold as Temporary Meniscal Prosthesis
,”
Artif. Organs
,
27
(
5
), pp.
428
431
.
10.
Kang
,
S.
,
Son
,
S.
,
Lee
,
J.
,
Lee
,
E.
,
Lee
,
K.
,
Park
,
S.
,
Park
,
J.
, and
Kim
,
B.
,
2006
, “
Regeneration of Whole Meniscus Using Meniscal Cells and Polymer Scaffolds in a Rabbit Total Meniscectomy Model
,”
J. Biomed. Mater. Res., Part A
,
78
(
3
), pp.
659
671
.
11.
Fisher
,
M. B.
,
Henning
,
E. A.
,
Söegaard
,
N.
,
Esterhai
,
J. L.
, and
Mauck
,
R. L.
,
2013
, “
Organized Nanofibrous Scaffolds That Mimic the Macroscopic and Microscopic Architecture of the Knee Meniscus
,”
Acta Biomater.
,
9
(
1
), pp.
4496
4504
.
12.
Hidaka
,
C.
,
Ibarra
,
C.
,
Hannafin
,
J. A.
,
Torzilli
,
P. A.
,
Quitoriano
,
M.
,
Jen
,
S.-S.
,
Warren
,
R. F.
, and
Crystal
,
R. G.
,
2002
, “
Formation of Vascularized Meniscal Tissue by Combining Gene Therapy With Tissue Engineering
,”
Tissue Eng.
,
8
(
1
), pp.
93
105
.
13.
Aufderheide
,
A. C.
, and
Athanasiou
,
K. A.
,
2007
, “
Assessment of a Bovine Co-Culture, Scaffold-Free Method for Growing Meniscus-Shaped Constructs
,”
Tissue Eng.
,
13
(
9
), pp.
2195
2205
.
14.
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2006
, “
A Self-Assembling Process in Articular Cartilage Tissue Engineering
,”
Tissue Eng.
,
12
(
4
), pp.
969
979
.
15.
Hutchinson
,
I. D.
,
Moran
,
C. J.
,
Potter
,
H. G.
,
Warren
,
R. F.
, and
Rodeo
,
S. A.
,
2013
, “
Restoration of the Meniscus: Form and Function
,”
Am. J. Sports Med.
,
42
(
4
), pp.
987
998
.
16.
Samitier
,
G.
,
Alentorn-Geli
,
E.
,
Taylor
,
D. C.
,
Rill
,
B.
,
Lock
,
T.
,
Moutzouros
,
V.
, and
Kolowich
,
P.
,
2014
, “
Meniscal Allograft Transplantation. Part 2: Systematic Review of Transplant Timing, Outcomes, Return to Competition, Associated Procedures, and Prevention of Osteoarthritis
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
23
(
1
), pp.
323
333
.
17.
Stone
,
K. R.
,
Walgenbach
,
A. W.
,
Turek
,
T. J.
,
Freyer
,
A.
, and
Hill
,
M. D.
,
2006
, “
Meniscus Allograft Survival in Patients With Moderate to Severe Unicompartmental Arthritis: A 2- to 7-Year Follow-Up
,”
Arthroscopy
,
22
(
5
), pp.
469
478
.
18.
Van Arkel
,
E. R. A.
, and
de Boer
,
H. H.
,
2002
, “
Survival Analysis of Human Meniscal Transplantations
,”
J. Bone Joint Surg.
,
84
(
2
), pp.
227
231
.
19.
McDermott
,
I.
, and
Thomas
,
N. P.
,
2006
, “
Human Meniscal Allograft Transplantation
,”
Knee
,
13
(
1
), pp.
69
71
.
20.
Arnoczky
,
S.
,
McDevitt
,
C.
,
Schmidt
,
M.
,
Mow
,
V.
, and
Warren
,
R.
,
1988
, “
The Effect of Cryopreservation on Canine Menisci: A Biochemical, Morphologic, and Biomechanical Evaluation
,”
J. Orthop. Res.
,
6
(
1
), pp.
1
12
.
21.
Rodeo
,
S. A.
,
Seneviratne
,
A.
,
Suzuki
,
K.
,
Felker
,
K.
,
Wickiewicz
,
T. L.
, and
Warren
,
R. F.
,
2000
, “
Histological Analysis of Human Meniscal Allografts. A Preliminary Report
,”
J. Bone Joint Surg.
,
82-A
(
8
), pp.
1071
1082
.
22.
Khoury
,
M. A.
,
Goldberg
,
V. M.
, and
Stevenson
,
S.
,
1994
, “
Demonstration of HLA and ABH Antigens in Fresh and Frozen Human Menisci by Immunohistochemistry
,”
J. Orthop. Res.
,
12
(
6
), pp.
751
757
.
23.
Klompmaker
,
J.
,
Jansen
,
H. W.
,
Veth
,
R. P.
,
Nielsen
,
H. K.
,
de Groot
,
J. H.
, and
Pennings
,
A. J.
,
1993
, “
Porous Implants for Knee Joint Meniscus Reconstruction: A Preliminary Study on the Role of Pore Sizes in Ingrowth and Differentiation of Fibrocartilage
,”
Clin. Mater.
,
14
(
1
), pp.
1
11
.
24.
White
,
R. A.
,
Hirose
,
F. M.
,
Sproat
,
R. W.
,
Lawrence
,
R. S.
, and
Nelson
,
R. J.
,
1981
, “
Histopathologic Observations After Short-Term Implantation of Two Porous Elastomers in Dogs
,”
Biomaterials
,
2
(
3
), pp.
171
176
.
25.
De Groot
,
J. H.
,
De Vrijer
,
R.
,
Pennings
,
A. J.
,
Klompmaker
,
J.
,
Veth
,
R. P. H.
, and
Jansen
,
H. W. B.
,
1996
, “
Use of Porous Polyurethanes for Meniscal Reconstruction and Meniscal Prostheses
,”
Biomaterials
,
17
(
2
), pp.
163
173
.
26.
Elema
,
H.
,
De Groot
,
J. H.
,
Nijenhuis
,
A. J.
,
Penningsl
,
A. J.
,
Veth
,
R. P. H.
, and
Klompmaker
,
J.
,
1990
, “
Use of Porous Biodegradable Polymer Implants in Meniscus Reconstruction. 2) Biological Evaluation of Porous Biodegradable Polymer Implants in Menisci
,”
Colloid Polym. Sci.
,
268
(
12
), pp.
1082
1088
.
27.
Tienen
,
T. G.
,
Heijkants
,
R. G. J. C.
,
de Groot
,
J. H.
,
Pennings
,
A. J.
,
Schouten
,
A. J.
,
Veth
,
R. P. H.
, and
Buma
,
P.
,
2006
, “
Replacement of the Knee Meniscus by a Porous Polymer Implant: A Study in Dogs
,”
Am. J. Sports Med.
,
34
(
1
), pp.
64
71
.
28.
Juran
,
C. M.
,
Dolwick
,
M. F.
, and
McFetridge
,
P. S.
,
2015
, “
Engineered Microporosity: Enhancing the Early Regenerative Potential of Decellularized Temporomandibular Joint Discs
,”
Tissue Eng., Part A
,
21
(
3–4
), pp.
829
839
.
29.
Stabile
,
K. J.
,
Odom
,
D.
,
Smith
,
T. L.
,
Northam
,
C.
,
Whitlock
,
P. W.
,
Smith
,
B. P.
,
Van Dyke
,
M. E.
, and
Ferguson
,
C. M.
,
2010
, “
An Acellular, Allograft-Derived Meniscus Scaffold in an Ovine Model
,”
Arthroscopy
,
26
(
7
), pp.
936
948
.
30.
Lumpkins
,
S. B.
,
Pierre
,
N.
, and
McFetridge
,
P. S.
,
2008
, “
A Mechanical Evaluation of Three Decellularization Methods in the Design of a Xenogeneic Scaffold for Tissue Engineering the Temporomandibular Joint Disc
,”
Acta Biomater.
,
4
(
4
), pp.
808
816
.
31.
Ionescu
,
L. C.
, and
Mauck
,
R. L.
,
2013
, “
Porosity and Cell Preseeding Influence Electrospun Scaffold Maturation and Meniscus Integration In Vitro
,”
Tissue Eng., Part A
,
19
, pp.
538
547
.
32.
Maher
,
S. A.
,
Rodeo
,
S. A.
,
Doty
,
S. B.
,
Brophy
,
R.
,
Potter
,
H.
,
Foo
,
L. F.
,
Rosenblatt
,
L.
,
Deng
,
X. H.
,
Turner
,
A. S.
,
Wright
,
T. M.
, and
Warren
,
R. F.
,
2010
, “
Evaluation of a Porous Polyurethane Scaffold in a Partial Meniscal Defect Ovine Model
,”
Arthroscopy
,
26
(
11
), pp.
1510
1519
.
33.
Baker
,
B. M.
,
Gee
,
A. O.
,
Metter
,
R. B.
,
Nathan
,
A. S.
,
Marklein
,
R. A.
,
Burdick
,
J. A.
, and
Mauck
,
R. L.
,
2008
, “
The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers
,”
Biomaterials
,
29
(
15
), pp.
2348
2358
.
34.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M.
, and
Mow
,
V. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.
35.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci
,”
J. Eng. Med.
,
219
(
1
), pp.
53
62
.
36.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
, V
. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
(
9
), pp.
1027
1045
.
37.
Martin Seitz
,
A.
,
Galbusera
,
F.
,
Krais
,
C.
,
Ignatius
,
A.
, and
Dürselen
,
L.
,
2013
, “
Stress–Relaxation Response of Human Menisci Under Confined Compression Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
26
(
2013
), pp.
68
80
.
38.
Petri
,
M.
,
Ufer
,
K.
,
Toma
,
I.
,
Becher
,
C.
,
Liodakis
,
E.
,
Brand
,
S.
,
Haas
,
P.
,
Liu
,
C.
,
Richter
,
B.
,
Haasper
,
C.
,
von Lewinski
,
G.
, and
Jagodzinski
,
M.
,
2012
, “
Effects of Perfusion and Cyclic Compression on In Vitro Tissue Engineered Meniscus Implants
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
20
(
2
), pp.
223
231
.
39.
Maes
,
J. A.
, and
Haut Donahue
,
T. L.
,
2006
, “
Time Dependent Properties of Bovine Meniscal Attachments: Stress Relaxation and Creep
,”
J. Biomech.
,
39
(
16
), pp.
3055
3061
.
40.
Chia
,
H. N.
, and
Hull
,
M. L.
,
2008
, “
Compressive Moduli of the Human Medial Meniscus in the Axial and Radial Directions at Equilibrium and at a Physiological Strain Rate
,”
J. Orthop. Res.
,
26
(
7
), pp.
951
956
.
41.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
42.
Toms
,
S. R.
,
Dakin
,
G. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
,
2002
, “
Quasi-Linear Viscoelastic Behavior of the Human Periodontal Ligament
,”
J. Biomech.
,
35
(
10
), pp.
1411
1415
.
43.
Xu
,
F.
,
Seffen
,
K.
, and
Lu
,
T.
,
2008
, “
A Quasi-Linear Viscoelastic Model for Skin Tissue
,”
3rd IASME/WSEAS International Conference on Continuum Mechanics
(
CM'08
), Cambridge, UK, Feb. 23–25, pp.
14
21
.
44.
Wills
,
D. J.
,
Picton
,
D. C. A.
, and
Davies
,
W. I. R.
,
1972
, “
An Investigation of the Viscoelastic Properties of the Periodontium in Monkeys
,”
J. Periodontal Res.
,
7
(
1
), pp.
42
51
.
45.
Meakin
,
J. R.
,
Shrive
,
N. G.
,
Frank
,
C. B.
, and
Hart
,
D. A.
,
2003
, “
Finite Element Analysis of the Meniscus: The Influence of Geometry and Material Properties on its Behaviour
,”
Knee
,
10
(
1
), pp.
33
41
.
46.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Tensile and Compressive Properties of the Medial Rabbit Meniscus
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
5
), pp.
337
347
.
47.
Stapleton
,
T. W.
,
Ingram
,
J.
,
Katta
,
J.
,
Knight
,
R.
,
Korossis
,
S.
,
Fisher
,
J.
, and
Ingham
,
E.
,
2008
, “
Development and Characterization of an Acellular Porcine Medial Meniscus for Use in Tissue Engineering
,”
Tissue Eng., Part A
,
14
(
4
), pp.
505
518
.
48.
Matuska
,
A. M.
, and
McFetridge
,
P. S.
,
2014
, “
The Effect of Terminal Sterilization on Structural and Biophysical Properties of a Decellularized Collagen-Based Scaffold; Implications for Stem Cell Adhesion
,”
J. Biomed. Mater. Res., Part B
,
103
(
2
), pp.
397
406
.
49.
Gilbert
,
T.
,
Sellaro
,
T.
, and
Badylak
,
S.
,
2006
, “
Decellularization of Tissues and Organs
,”
Biomaterials
,
27
(
19
), pp.
3675
3683
.
50.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1990
, “
Material Properties and Structure-Function Relationships in the Menisci
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.
51.
Ghosh
,
P.
, and
Taylor
,
T.
,
1987
, “
The Knee Joint Meniscus: A Fibrocartilage of Some Distinction
,”
Clin. Orthop. Rel. Res.
,
224
, pp.
52
63
.
52.
Prestrelski
,
S. J.
,
Tedeschi
,
N.
,
Arakawa
,
T.
, and
Carpenter
,
J. F.
,
1993
, “
Dehydration-Induced Conformational Transitions in Proteins and Their Inhibition by Stabilizers
,”
Biophys. J.
,
65
(
2
), pp.
661
671
.
You do not currently have access to this content.